Journal article 624 views 98 downloads
Markov dynamics on the cone of discrete Radon measures
Methods of Functional Analysis and Topology, Volume: 27, Issue: 2, Pages: 173 - 191
Swansea University Author: Dmitri Finkelshtein
DOI (Published version): 10.31392/MFAT-npu26_2.2021.06
Abstract
We start with a brief overview of the known facts about the spaces of discrete Radon measures those may be considered as generalizations of configuration spaces. Then we study three Markov dynamics on the spaces of discrete Radon measures: analogues of the contact model, of the Bolker-Dieckmann-Law-...
Published in: | Methods of Functional Analysis and Topology |
---|---|
ISSN: | 1029-3531 2415-7503 |
Published: |
Institute of Mathematics NAS of Ukraine
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58285 |
first_indexed |
2021-10-11T06:19:09Z |
---|---|
last_indexed |
2021-11-11T04:25:39Z |
id |
cronfa58285 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-11-10T14:44:24.1272273</datestamp><bib-version>v2</bib-version><id>58285</id><entry>2021-10-11</entry><title>Markov dynamics on the cone of discrete Radon measures</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-10-11</date><deptcode>MACS</deptcode><abstract>We start with a brief overview of the known facts about the spaces of discrete Radon measures those may be considered as generalizations of configuration spaces. Then we study three Markov dynamics on the spaces of discrete Radon measures: analogues of the contact model, of the Bolker-Dieckmann-Law-Pacala model, and of the Glauber-type dynamics. We show how the results obtained previously for the configuration spaces can be modified for the case of the spaces of discrete Radon measures.</abstract><type>Journal Article</type><journal>Methods of Functional Analysis and Topology</journal><volume>27</volume><journalNumber>2</journalNumber><paginationStart>173</paginationStart><paginationEnd>191</paginationEnd><publisher>Institute of Mathematics NAS of Ukraine</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1029-3531</issnPrint><issnElectronic>2415-7503</issnElectronic><keywords>Discrete Radon measures, Markov dynamics, contact model, BDLP model, Glauber dynamics, population models</keywords><publishedDay>2</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-07-02</publishedDate><doi>10.31392/MFAT-npu26_2.2021.06</doi><url>http://mfat.imath.kiev.ua/article/?id=1563</url><notes>http://mfat.imath.kiev.ua/article/?id=1563</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><lastEdited>2021-11-10T14:44:24.1272273</lastEdited><Created>2021-10-11T07:08:17.4315626</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Peter</firstname><surname>Kuchling</surname><order>3</order></author></authors><documents><document><filename>58285__21478__445a998825594bc6a76176d0af6b43a2.pdf</filename><originalFilename>58285.pdf</originalFilename><uploaded>2021-11-10T13:46:06.5148951</uploaded><type>Output</type><contentLength>548907</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>The Author(s) 2021 (CC BY-SA)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-sa/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-11-10T14:44:24.1272273 v2 58285 2021-10-11 Markov dynamics on the cone of discrete Radon measures 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false 2021-10-11 MACS We start with a brief overview of the known facts about the spaces of discrete Radon measures those may be considered as generalizations of configuration spaces. Then we study three Markov dynamics on the spaces of discrete Radon measures: analogues of the contact model, of the Bolker-Dieckmann-Law-Pacala model, and of the Glauber-type dynamics. We show how the results obtained previously for the configuration spaces can be modified for the case of the spaces of discrete Radon measures. Journal Article Methods of Functional Analysis and Topology 27 2 173 191 Institute of Mathematics NAS of Ukraine 1029-3531 2415-7503 Discrete Radon measures, Markov dynamics, contact model, BDLP model, Glauber dynamics, population models 2 7 2021 2021-07-02 10.31392/MFAT-npu26_2.2021.06 http://mfat.imath.kiev.ua/article/?id=1563 http://mfat.imath.kiev.ua/article/?id=1563 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required 2021-11-10T14:44:24.1272273 2021-10-11T07:08:17.4315626 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Peter Kuchling 3 58285__21478__445a998825594bc6a76176d0af6b43a2.pdf 58285.pdf 2021-11-10T13:46:06.5148951 Output 548907 application/pdf Version of Record true The Author(s) 2021 (CC BY-SA) true eng https://creativecommons.org/licenses/by-sa/4.0/ |
title |
Markov dynamics on the cone of discrete Radon measures |
spellingShingle |
Markov dynamics on the cone of discrete Radon measures Dmitri Finkelshtein |
title_short |
Markov dynamics on the cone of discrete Radon measures |
title_full |
Markov dynamics on the cone of discrete Radon measures |
title_fullStr |
Markov dynamics on the cone of discrete Radon measures |
title_full_unstemmed |
Markov dynamics on the cone of discrete Radon measures |
title_sort |
Markov dynamics on the cone of discrete Radon measures |
author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf |
author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein |
author |
Dmitri Finkelshtein |
author2 |
Dmitri Finkelshtein Yuri Kondratiev Peter Kuchling |
format |
Journal article |
container_title |
Methods of Functional Analysis and Topology |
container_volume |
27 |
container_issue |
2 |
container_start_page |
173 |
publishDate |
2021 |
institution |
Swansea University |
issn |
1029-3531 2415-7503 |
doi_str_mv |
10.31392/MFAT-npu26_2.2021.06 |
publisher |
Institute of Mathematics NAS of Ukraine |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://mfat.imath.kiev.ua/article/?id=1563 |
document_store_str |
1 |
active_str |
0 |
description |
We start with a brief overview of the known facts about the spaces of discrete Radon measures those may be considered as generalizations of configuration spaces. Then we study three Markov dynamics on the spaces of discrete Radon measures: analogues of the contact model, of the Bolker-Dieckmann-Law-Pacala model, and of the Glauber-type dynamics. We show how the results obtained previously for the configuration spaces can be modified for the case of the spaces of discrete Radon measures. |
published_date |
2021-07-02T20:12:10Z |
_version_ |
1821528272956030976 |
score |
11.047674 |