No Cover Image

Journal article 871 views 98 downloads

Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata

Lloyd Hopkins, Nathan R. Geraldi, Ed Pope Orcid Logo, Mark Holton Orcid Logo, Miguel Lurgi Rivera Orcid Logo, Carlos M. Duarte, Rory Wilson Orcid Logo

Animal Biotelemetry, Volume: 9, Issue: 1

Swansea University Authors: Lloyd Hopkins, Ed Pope Orcid Logo, Mark Holton Orcid Logo, Miguel Lurgi Rivera Orcid Logo, Rory Wilson Orcid Logo

  • 58099.pdf

    PDF | Version of Record

    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.54MB)

Abstract

BackgroundQuantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement b...

Full description

Published in: Animal Biotelemetry
ISSN: 2050-3385
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58099
Abstract: BackgroundQuantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement but are of limited applicability for slow-moving species. It has recently been suggested that metrics based on angular velocity might be better suited to characterise their energetics. We investigated whether a novel metric—the ‘Rate of change of Rotational Movement (RocRM)’, calculated from the vectoral sum of change in the pitch, roll and yaw/heading axes over a given length of time, is a suitable proxy for energy expenditure.ResultsWe found that RocRM can be used as an alternative energy expenditure proxy in a slow-moving benthic invertebrate. Eleven Giant spider conchs Lambis truncata (collected in the Red Sea) were instrumented with multiple channel (Daily Diary) tags and kept in sealed chambers for 5 h while their oxygen consumption, V̇O2, was measured. We found RocRM to be positively correlated with V̇O2, this relationship being affected by the time-step (i.e. the range of the calculated differential) of the RocRM. Time steps of 1, 5, 10 and 60 s yielded an explained variability of between 15 and 31%. The relationship between V̇O2 and VeDBA was not statistically significant, suggesting RocRM to provide more accurate estimations of metabolic rates in L. truncata.ConclusionsRocRM proved to be a statistically significant predictor of V̇O2 where VeDBA did not, validating the approach of using angular-based metrics over dynamic movement-based ones for slower moving animals. Further work is required to validate the use of RocRM for other species, particularly in animals with minimally dynamic movement, to better understand energetic costs of whole ecosystems. Unexplained variability in the models might be a consequence of the methodology used, but also likely a result of conch activity that does not manifest in movement of the shell. Additionally, density plots of mean RocRM at each time-step suggest differences in movement scales, which may collectively be useful as a species fingerprint of movement going forward.
Keywords: Angular velocity, Dynamic body acceleration (DBA), Energy expenditure, Movement costs, RocRM,Rotational movement
College: Faculty of Science and Engineering
Funders: KAUST-funded studentship
Issue: 1