No Cover Image

Journal article 908 views 129 downloads

Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services

Davide De Battisti, Mike Fowler Orcid Logo, Stuart R. Jenkins, Martin W. Skov, Tjeerd J. Bouma, Penny Neyland, John Griffin Orcid Logo

Journal of Ecology, Volume: 108, Issue: 4, Pages: 1227 - 1240

Swansea University Authors: Davide De Battisti, Mike Fowler Orcid Logo, Penny Neyland, John Griffin Orcid Logo

  • deBattisti_etal_2020_JEcol.pdf

    PDF | Version of Record

    © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (1.38MB)

Abstract

The plant economic spectrum (PES) predicts a suite of correlated traits in a continuum from resource conservation to rapid resource acquisition. In addition to competing for resources, plants need to cope with other environmental stresses to persist and reproduce. Yet, it is unclear how multiple str...

Full description

Published in: Journal of Ecology
ISSN: 0022-0477 1365-2745
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57973
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The plant economic spectrum (PES) predicts a suite of correlated traits in a continuum from resource conservation to rapid resource acquisition. In addition to competing for resources, plants need to cope with other environmental stresses to persist and reproduce. Yet, it is unclear how multiple strategies (i.e. traits uncorrelated with the PES) affect plant biomass allocation, hindering our ability to connect environmental gradients to ecosystem services.We examined intraspecific dimensionality of leaf and root traits in the salt marsh pioneer species Spartina anglica across salinity, redox and sand content gradients, and related them to above-ground and below-ground plant biomass—properties associated with wave attenuation and sediment stabilization in coastal marshes.Through principal component analysis, we did not find support for a single PES trait dimension (strategy), but instead identified four trait dimensions: (a) leaf economic spectrum (LES, leaf analogue of PES); (b) fine roots-rhizomes; (c) coarse roots; and (d) salt extrusion. Structural equation modelling showed a shift towards the conservative side of the LES under increasing salinity, while redox had a positive influence on the coarse roots dimension. In turn, these trait dimensions were strongly associated with above-ground and below-ground biomass (BLW biomass) allocation.These results indicate that under high salinity, plants will adopt a conservative strategy and will invest more in BLW biomass. Yet, high sediment redox would still allow plants to invest in above-ground biomass. Therefore, plants' trait-mediated biomass allocation depends on the specific combination of abiotic factors experienced at the local scale.Synthesis. Our study highlights the importance of considering multiple ecological strategies for understanding the effect of the environment on plants. Abiotic stresses can influence multiple trait strategy-dimensions, with consequences for ecosystem functioning.
Keywords: functional traits; intraspecific trait variability; plant economic spectrum; Spartina anglica
College: Faculty of Science and Engineering
Funders: Welsh Government and HEFCW through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment RESILCOAST project
Issue: 4
Start Page: 1227
End Page: 1240