Journal article 874 views
Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective
IEEE Transactions on Neural Networks and Learning Systems, Volume: 32, Issue: 5, Pages: 1 - 15
Swansea University Authors: Zhan Li, Shuai Li
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/tnnls.2021.3109953
Abstract
Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the perfor...
Published in: | IEEE Transactions on Neural Networks and Learning Systems |
---|---|
ISSN: | 2162-237X 2162-2388 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57895 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
5 |
Start Page: |
1 |
End Page: |
15 |