No Cover Image

Journal article 808 views 118 downloads

New signatures of the spin gap in quantum point contacts

K. L. Hudson, A. Srinivasan, O. Goulko, J. Adam, Q. Wang, L. A. Yeoh, O. Klochan, I. Farrer, David Ritchie Orcid Logo, A. Ludwig, A. D. Wieck, J. von Delft, A. R. Hamilton

Nature Communications, Volume: 12, Issue: 1

Swansea University Author: David Ritchie Orcid Logo

  • s41467-020-19895-3.pdf

    PDF | Version of Record

    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.5MB)

Abstract

One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57845
first_indexed 2021-09-15T14:22:28Z
last_indexed 2023-01-11T14:38:01Z
id cronfa57845
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-25T14:06:00.1918630</datestamp><bib-version>v2</bib-version><id>57845</id><entry>2021-09-10</entry><title>New signatures of the spin gap in quantum point contacts</title><swanseaauthors><author><sid>e943ea127ff7b7771c2b27c15b96c6fa</sid><ORCID>0000-0002-9844-8350</ORCID><firstname>David</firstname><surname>Ritchie</surname><name>David Ritchie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-10</date><deptcode>BGPS</deptcode><abstract>One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap &#x394;E &#x2248; 500 &#x3BC;eV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>12</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>4</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-04</publishedDate><doi>10.1038/s41467-020-19895-3</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-25T14:06:00.1918630</lastEdited><Created>2021-09-10T16:48:03.2300119</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>K. L.</firstname><surname>Hudson</surname><order>1</order></author><author><firstname>A.</firstname><surname>Srinivasan</surname><order>2</order></author><author><firstname>O.</firstname><surname>Goulko</surname><order>3</order></author><author><firstname>J.</firstname><surname>Adam</surname><order>4</order></author><author><firstname>Q.</firstname><surname>Wang</surname><order>5</order></author><author><firstname>L. A.</firstname><surname>Yeoh</surname><order>6</order></author><author><firstname>O.</firstname><surname>Klochan</surname><order>7</order></author><author><firstname>I.</firstname><surname>Farrer</surname><order>8</order></author><author><firstname>David</firstname><surname>Ritchie</surname><orcid>0000-0002-9844-8350</orcid><order>9</order></author><author><firstname>A.</firstname><surname>Ludwig</surname><order>10</order></author><author><firstname>A. D.</firstname><surname>Wieck</surname><order>11</order></author><author><firstname>J. von</firstname><surname>Delft</surname><order>12</order></author><author><firstname>A. R.</firstname><surname>Hamilton</surname><order>13</order></author></authors><documents><document><filename>57845__20823__8d640790e7ae45d693f9a1433dd539b6.pdf</filename><originalFilename>s41467-020-19895-3.pdf</originalFilename><uploaded>2021-09-10T16:58:52.9133849</uploaded><type>Output</type><contentLength>1574879</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-25T14:06:00.1918630 v2 57845 2021-09-10 New signatures of the spin gap in quantum point contacts e943ea127ff7b7771c2b27c15b96c6fa 0000-0002-9844-8350 David Ritchie David Ritchie true false 2021-09-10 BGPS One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications. Journal Article Nature Communications 12 1 Springer Science and Business Media LLC 2041-1723 4 1 2021 2021-01-04 10.1038/s41467-020-19895-3 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-10-25T14:06:00.1918630 2021-09-10T16:48:03.2300119 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics K. L. Hudson 1 A. Srinivasan 2 O. Goulko 3 J. Adam 4 Q. Wang 5 L. A. Yeoh 6 O. Klochan 7 I. Farrer 8 David Ritchie 0000-0002-9844-8350 9 A. Ludwig 10 A. D. Wieck 11 J. von Delft 12 A. R. Hamilton 13 57845__20823__8d640790e7ae45d693f9a1433dd539b6.pdf s41467-020-19895-3.pdf 2021-09-10T16:58:52.9133849 Output 1574879 application/pdf Version of Record true © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title New signatures of the spin gap in quantum point contacts
spellingShingle New signatures of the spin gap in quantum point contacts
David Ritchie
title_short New signatures of the spin gap in quantum point contacts
title_full New signatures of the spin gap in quantum point contacts
title_fullStr New signatures of the spin gap in quantum point contacts
title_full_unstemmed New signatures of the spin gap in quantum point contacts
title_sort New signatures of the spin gap in quantum point contacts
author_id_str_mv e943ea127ff7b7771c2b27c15b96c6fa
author_id_fullname_str_mv e943ea127ff7b7771c2b27c15b96c6fa_***_David Ritchie
author David Ritchie
author2 K. L. Hudson
A. Srinivasan
O. Goulko
J. Adam
Q. Wang
L. A. Yeoh
O. Klochan
I. Farrer
David Ritchie
A. Ludwig
A. D. Wieck
J. von Delft
A. R. Hamilton
format Journal article
container_title Nature Communications
container_volume 12
container_issue 1
publishDate 2021
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-020-19895-3
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.
published_date 2021-01-04T14:12:58Z
_version_ 1821415076624596992
score 11.048129