Journal article 808 views 118 downloads
New signatures of the spin gap in quantum point contacts
Nature Communications, Volume: 12, Issue: 1
Swansea University Author: David Ritchie
-
PDF | Version of Record
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License
Download (1.5MB)
DOI (Published version): 10.1038/s41467-020-19895-3
Abstract
One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 |
Published: |
Springer Science and Business Media LLC
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57845 |
first_indexed |
2021-09-15T14:22:28Z |
---|---|
last_indexed |
2023-01-11T14:38:01Z |
id |
cronfa57845 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-25T14:06:00.1918630</datestamp><bib-version>v2</bib-version><id>57845</id><entry>2021-09-10</entry><title>New signatures of the spin gap in quantum point contacts</title><swanseaauthors><author><sid>e943ea127ff7b7771c2b27c15b96c6fa</sid><ORCID>0000-0002-9844-8350</ORCID><firstname>David</firstname><surname>Ritchie</surname><name>David Ritchie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-10</date><deptcode>BGPS</deptcode><abstract>One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>12</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>4</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-04</publishedDate><doi>10.1038/s41467-020-19895-3</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-25T14:06:00.1918630</lastEdited><Created>2021-09-10T16:48:03.2300119</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>K. L.</firstname><surname>Hudson</surname><order>1</order></author><author><firstname>A.</firstname><surname>Srinivasan</surname><order>2</order></author><author><firstname>O.</firstname><surname>Goulko</surname><order>3</order></author><author><firstname>J.</firstname><surname>Adam</surname><order>4</order></author><author><firstname>Q.</firstname><surname>Wang</surname><order>5</order></author><author><firstname>L. A.</firstname><surname>Yeoh</surname><order>6</order></author><author><firstname>O.</firstname><surname>Klochan</surname><order>7</order></author><author><firstname>I.</firstname><surname>Farrer</surname><order>8</order></author><author><firstname>David</firstname><surname>Ritchie</surname><orcid>0000-0002-9844-8350</orcid><order>9</order></author><author><firstname>A.</firstname><surname>Ludwig</surname><order>10</order></author><author><firstname>A. D.</firstname><surname>Wieck</surname><order>11</order></author><author><firstname>J. von</firstname><surname>Delft</surname><order>12</order></author><author><firstname>A. R.</firstname><surname>Hamilton</surname><order>13</order></author></authors><documents><document><filename>57845__20823__8d640790e7ae45d693f9a1433dd539b6.pdf</filename><originalFilename>s41467-020-19895-3.pdf</originalFilename><uploaded>2021-09-10T16:58:52.9133849</uploaded><type>Output</type><contentLength>1574879</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-25T14:06:00.1918630 v2 57845 2021-09-10 New signatures of the spin gap in quantum point contacts e943ea127ff7b7771c2b27c15b96c6fa 0000-0002-9844-8350 David Ritchie David Ritchie true false 2021-09-10 BGPS One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications. Journal Article Nature Communications 12 1 Springer Science and Business Media LLC 2041-1723 4 1 2021 2021-01-04 10.1038/s41467-020-19895-3 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2022-10-25T14:06:00.1918630 2021-09-10T16:48:03.2300119 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics K. L. Hudson 1 A. Srinivasan 2 O. Goulko 3 J. Adam 4 Q. Wang 5 L. A. Yeoh 6 O. Klochan 7 I. Farrer 8 David Ritchie 0000-0002-9844-8350 9 A. Ludwig 10 A. D. Wieck 11 J. von Delft 12 A. R. Hamilton 13 57845__20823__8d640790e7ae45d693f9a1433dd539b6.pdf s41467-020-19895-3.pdf 2021-09-10T16:58:52.9133849 Output 1574879 application/pdf Version of Record true © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
New signatures of the spin gap in quantum point contacts |
spellingShingle |
New signatures of the spin gap in quantum point contacts David Ritchie |
title_short |
New signatures of the spin gap in quantum point contacts |
title_full |
New signatures of the spin gap in quantum point contacts |
title_fullStr |
New signatures of the spin gap in quantum point contacts |
title_full_unstemmed |
New signatures of the spin gap in quantum point contacts |
title_sort |
New signatures of the spin gap in quantum point contacts |
author_id_str_mv |
e943ea127ff7b7771c2b27c15b96c6fa |
author_id_fullname_str_mv |
e943ea127ff7b7771c2b27c15b96c6fa_***_David Ritchie |
author |
David Ritchie |
author2 |
K. L. Hudson A. Srinivasan O. Goulko J. Adam Q. Wang L. A. Yeoh O. Klochan I. Farrer David Ritchie A. Ludwig A. D. Wieck J. von Delft A. R. Hamilton |
format |
Journal article |
container_title |
Nature Communications |
container_volume |
12 |
container_issue |
1 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2041-1723 |
doi_str_mv |
10.1038/s41467-020-19895-3 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 μeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications. |
published_date |
2021-01-04T14:12:58Z |
_version_ |
1821415076624596992 |
score |
11.048129 |