No Cover Image

Journal article 829 views 186 downloads

Electron spin resonance resolves intermediate triplet states in delayed fluorescence

Bluebell H. Drummond, Naoya Aizawa, Yadong Zhang, William K. Myers, Yao Xiong, Matthew W. Cooper, Stephen Barlow, Qinying Gu, Leah R. Weiss, Alexander J. Gillett, Dan Credgington, Yong-Jin Pu, Seth R. Marder, Emrys Evans Orcid Logo

Nature Communications, Volume: 12, Issue: 1

Swansea University Author: Emrys Evans Orcid Logo

  • 57410.pdf

    PDF | Version of Record

    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.74MB)

Abstract

Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic state...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57410
Abstract: Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states.
College: Faculty of Science and Engineering
Funders: Engineering and Physical Sciences Research Council
Issue: 1