No Cover Image

Journal article 881 views 116 downloads

Frailty assessed by administrative tools and mortality in patients with pneumonia admitted to the hospital and ICU in Wales

Tamas Szakmany, Joe Hollinghurst, Richard Pugh, Ashley Akbari Orcid Logo, Rowena Griffiths, Rowena Bailey, Ronan Lyons Orcid Logo

Scientific Reports, Volume: 11, Issue: 1

Swansea University Authors: Joe Hollinghurst, Ashley Akbari Orcid Logo, Rowena Griffiths, Rowena Bailey, Ronan Lyons Orcid Logo

  • 57235.pdf

    PDF | Version of Record

    © The Author(s) 2021. Tis article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.13MB)

Abstract

The ideal method of identifying frailty is uncertain, and data on long-term outcomes is relatively limited. We examined frailty indices derived from population-scale linked data on Intensive Care Unit (ICU) and hospitalised non-ICU patients with pneumonia to elucidate the influence of frailty on mor...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: Springer Science and Business Media LLC 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57235
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The ideal method of identifying frailty is uncertain, and data on long-term outcomes is relatively limited. We examined frailty indices derived from population-scale linked data on Intensive Care Unit (ICU) and hospitalised non-ICU patients with pneumonia to elucidate the influence of frailty on mortality. Longitudinal cohort study between 2010–2018 using population-scale anonymised data linkage of healthcare records for adults admitted to hospital with pneumonia in Wales. Primary outcome was in-patient mortality. Odds Ratios (ORs [95% confidence interval]) for age, hospital frailty risk score (HFRS), electronic frailty index (eFI), Charlson comorbidity index (CCI), and social deprivation index were estimated using multivariate logistic regression models. The area under the receiver operating characteristic curve (AUC) was estimated to determine the best fitting models. Of the 107,188 patients, mean (SD) age was 72.6 (16.6) years, 50% were men. The models adjusted for the two frailty indices and the comorbidity index had an increased odds of in-patient mortality for individuals with an ICU admission (ORs for ICU admission in the eFI model 2.67 [2.55, 2.79], HFRS model 2.30 [2.20, 2.41], CCI model 2.62 [2.51, 2.75]). Models indicated advancing age, increased frailty and comorbidity were also associated with an increased odds of in-patient mortality (eFI, baseline fit, ORs: mild 1.09 [1.04, 1.13], moderate 1.13 [1.08, 1.18], severe 1.17 [1.10, 1.23]. HFRS, baseline low, ORs: intermediate 2.65 [2.55, 2.75], high 3.31 [3.17, 3.45]). CCI, baseline < 1, ORs: ‘1–10′ 1.15 [1.11, 1.20], > 10 2.50 [2.41, 2.60]). For predicting inpatient deaths, the CCI and HFRS based models were similar, however for longer term outcomes the CCI based model was superior. Frailty and comorbidity are significant risk factors for patients admitted to hospital with pneumonia. Frailty and comorbidity scores based on administrative data have only moderate ability to predict outcome.
Keywords: Epidemiology, Outcomes research, Respiratory tract diseases, Risk factors
College: Faculty of Medicine, Health and Life Sciences
Funders: This work was supported by Health Data Research UK, which receives its funding from HDR UK Ltd (HDR-9006) funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust. This research has been supported by the ADR Wales programme of work. The ADR Wales programme of work is aligned to the priority themes as identified in the Welsh Government’s national strategy: prosperity for All. ADR Wales brings together data science experts at Swansea University Medical School, staff from the Wales Institute of Social and Economic Research, Data and Methods (WISERD) at Cardiff University and specialist teams within the Welsh Government to develop new evidence which supports Prosperity for All by using the SAIL Databank at Swansea University, to link and analyse anonymised data. ADR Wales is part of the Economic and Social Research Council (part of UK Research and Innovation) funded ADR UK (grant ES/S007393/1). Professor Szakmany and Dr Pugh have been supported by grants from the Welsh Government Critical Illness Implementation Group between 2017–19.
Issue: 1