Journal article 290 views 48 downloads
Semi-Free Actions with Manifold Orbit Spaces
Documenta Mathematica: Journal der Deutschen Mathematiker-Vereinigung, Volume: 25, Pages: 2085 - 2114
Swansea University Author:
John Harvey
-
PDF | Version of Record
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License
Download (311.2KB)
DOI (Published version): 10.25537/dm.2020v25.2085-2114
Abstract
In this paper, we study smooth, semi-free actions on closed, smooth, simply connected manifolds, such that the orbit space is a smoothable manifold. We show that the only simply connected 5-manifolds admitting a smooth, semi-free circle action with fixedpoint components of codimension 4 are connecte...
Published in: | Documenta Mathematica: Journal der Deutschen Mathematiker-Vereinigung |
---|---|
ISSN: | 1431-0643e 1431-0635 |
Published: |
Deutsche Mathematiker-Vereinigung e.V., Berlin
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56479 |
first_indexed |
2021-03-22T10:24:00Z |
---|---|
last_indexed |
2021-04-20T03:21:58Z |
id |
cronfa56479 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-04-19T13:18:47.4182281</datestamp><bib-version>v2</bib-version><id>56479</id><entry>2021-03-22</entry><title>Semi-Free Actions with Manifold Orbit Spaces</title><swanseaauthors><author><sid>1a837434ec48367a7ffb596d04690bfd</sid><ORCID>0000-0001-9211-0060</ORCID><firstname>John</firstname><surname>Harvey</surname><name>John Harvey</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-03-22</date><deptcode>MACS</deptcode><abstract>In this paper, we study smooth, semi-free actions on closed, smooth, simply connected manifolds, such that the orbit space is a smoothable manifold. We show that the only simply connected 5-manifolds admitting a smooth, semi-free circle action with fixedpoint components of codimension 4 are connected sums of S^3-bundles over S^2. Furthermore, the Betti numbers of the 5-manifolds and of the quotient 4-manifolds are related by a simple formula involving the number of fixed-point components. We also investigate semi-free S^3 actions on simply connected 8-manifolds with quotient a 5-manifold and show, in particular, that there are strong restrictions on the topology of the 8-manifold.</abstract><type>Journal Article</type><journal>Documenta Mathematica: Journal der Deutschen Mathematiker-Vereinigung</journal><volume>25</volume><journalNumber/><paginationStart>2085</paginationStart><paginationEnd>2114</paginationEnd><publisher>Deutsche Mathematiker-Vereinigung e.V., Berlin</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1431-0643e</issnPrint><issnElectronic>1431-0635</issnElectronic><keywords>circle action, semi-free action, 5-manifolds, 4-manifolds, 8-manifolds</keywords><publishedDay>26</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-26</publishedDate><doi>10.25537/dm.2020v25.2085-2114</doi><url>https://elibm.org/article/10012075</url><notes>Final published version is available at https://elibm.org/article/10012075.</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-04-19T13:18:47.4182281</lastEdited><Created>2021-03-22T10:11:33.5291184</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>John</firstname><surname>Harvey</surname><orcid>0000-0001-9211-0060</orcid><order>1</order></author><author><firstname>Martin</firstname><surname>Kerin</surname><order>2</order></author><author><firstname>Krishnan</firstname><surname>Shankar</surname><order>3</order></author></authors><documents><document><filename>56479__19682__62bb12791aea4db3bed228393f6865d9.pdf</filename><originalFilename>56479.pdf</originalFilename><uploaded>2021-04-19T13:13:22.4854595</uploaded><type>Output</type><contentLength>318672</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-04-19T13:18:47.4182281 v2 56479 2021-03-22 Semi-Free Actions with Manifold Orbit Spaces 1a837434ec48367a7ffb596d04690bfd 0000-0001-9211-0060 John Harvey John Harvey true false 2021-03-22 MACS In this paper, we study smooth, semi-free actions on closed, smooth, simply connected manifolds, such that the orbit space is a smoothable manifold. We show that the only simply connected 5-manifolds admitting a smooth, semi-free circle action with fixedpoint components of codimension 4 are connected sums of S^3-bundles over S^2. Furthermore, the Betti numbers of the 5-manifolds and of the quotient 4-manifolds are related by a simple formula involving the number of fixed-point components. We also investigate semi-free S^3 actions on simply connected 8-manifolds with quotient a 5-manifold and show, in particular, that there are strong restrictions on the topology of the 8-manifold. Journal Article Documenta Mathematica: Journal der Deutschen Mathematiker-Vereinigung 25 2085 2114 Deutsche Mathematiker-Vereinigung e.V., Berlin 1431-0643e 1431-0635 circle action, semi-free action, 5-manifolds, 4-manifolds, 8-manifolds 26 2 2020 2020-02-26 10.25537/dm.2020v25.2085-2114 https://elibm.org/article/10012075 Final published version is available at https://elibm.org/article/10012075. COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-04-19T13:18:47.4182281 2021-03-22T10:11:33.5291184 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics John Harvey 0000-0001-9211-0060 1 Martin Kerin 2 Krishnan Shankar 3 56479__19682__62bb12791aea4db3bed228393f6865d9.pdf 56479.pdf 2021-04-19T13:13:22.4854595 Output 318672 application/pdf Version of Record true © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Semi-Free Actions with Manifold Orbit Spaces |
spellingShingle |
Semi-Free Actions with Manifold Orbit Spaces John Harvey |
title_short |
Semi-Free Actions with Manifold Orbit Spaces |
title_full |
Semi-Free Actions with Manifold Orbit Spaces |
title_fullStr |
Semi-Free Actions with Manifold Orbit Spaces |
title_full_unstemmed |
Semi-Free Actions with Manifold Orbit Spaces |
title_sort |
Semi-Free Actions with Manifold Orbit Spaces |
author_id_str_mv |
1a837434ec48367a7ffb596d04690bfd |
author_id_fullname_str_mv |
1a837434ec48367a7ffb596d04690bfd_***_John Harvey |
author |
John Harvey |
author2 |
John Harvey Martin Kerin Krishnan Shankar |
format |
Journal article |
container_title |
Documenta Mathematica: Journal der Deutschen Mathematiker-Vereinigung |
container_volume |
25 |
container_start_page |
2085 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1431-0643e 1431-0635 |
doi_str_mv |
10.25537/dm.2020v25.2085-2114 |
publisher |
Deutsche Mathematiker-Vereinigung e.V., Berlin |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
https://elibm.org/article/10012075 |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we study smooth, semi-free actions on closed, smooth, simply connected manifolds, such that the orbit space is a smoothable manifold. We show that the only simply connected 5-manifolds admitting a smooth, semi-free circle action with fixedpoint components of codimension 4 are connected sums of S^3-bundles over S^2. Furthermore, the Betti numbers of the 5-manifolds and of the quotient 4-manifolds are related by a simple formula involving the number of fixed-point components. We also investigate semi-free S^3 actions on simply connected 8-manifolds with quotient a 5-manifold and show, in particular, that there are strong restrictions on the topology of the 8-manifold. |
published_date |
2020-02-26T11:33:07Z |
_version_ |
1831910494866243584 |
score |
11.059359 |