No Cover Image

Journal article 1211 views 393 downloads

Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells

Alex Doolin, Rhys G. Charles Orcid Logo, Catherine S. P. De Castro, Rodrigo Garcia Rodriguez, Emmanuel Pean, Rahul Patidar, Tom O. Dunlop Orcid Logo, Cecile Charbonneau Orcid Logo, Trystan Watson Orcid Logo, Matthew Davies Orcid Logo

Green Chemistry, Volume: 23, Issue: 6, Pages: 2471 - 2486

Swansea University Authors: Alex Doolin, Rhys G. Charles Orcid Logo, Rodrigo Garcia Rodriguez, Emmanuel Pean, Rahul Patidar, Tom O. Dunlop Orcid Logo, Cecile Charbonneau Orcid Logo, Trystan Watson Orcid Logo, Matthew Davies Orcid Logo

  • 56436.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution-NonCommercial 3.0 Unported License

    Download (2.91MB)

Check full text

DOI (Published version): 10.1039/d1gc00079a

Abstract

Perovskite solar cells have emerged as a promising and highly efficient solar technology. Despite efficiencies continuing to climb, the prospect of industrial manufacture is hampered by concerns regarding the safety and sustainability of the solvents used in lab scale manufacture. In this paper, we...

Full description

Published in: Green Chemistry
ISSN: 1463-9262 1463-9270
Published: Royal Society of Chemistry (RSC) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56436
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-03-12T14:19:49Z
last_indexed 2023-01-11T14:35:39Z
id cronfa56436
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-11-24T15:28:15.1934452</datestamp><bib-version>v2</bib-version><id>56436</id><entry>2021-03-12</entry><title>Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells</title><swanseaauthors><author><sid>680f34719d200ba8748cea37ee929927</sid><firstname>Alex</firstname><surname>Doolin</surname><name>Alex Doolin</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ff66fa61714afa2dd8bdae1769a5d21</sid><ORCID>0000-0003-1886-378X</ORCID><firstname>Rhys G.</firstname><surname>Charles</surname><name>Rhys G. Charles</name><active>true</active><ethesisStudent>true</ethesisStudent></author><author><sid>fb0f6e1eeb02aedee895b457faa35445</sid><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><name>Rodrigo Garcia Rodriguez</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fe9108445b985e2687ca3ccfc5c73812</sid><firstname>Emmanuel</firstname><surname>Pean</surname><name>Emmanuel Pean</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa7f3b2aa6daa1c80cad60a4dd59055b</sid><firstname>Rahul</firstname><surname>Patidar</surname><name>Rahul Patidar</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2c5194f421c9fe645b6115c20f5cf9ad</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom O.</firstname><surname>Dunlop</surname><name>Tom O. Dunlop</name><active>true</active><ethesisStudent>true</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><ORCID>0000-0001-9887-2007</ORCID><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-03-12</date><deptcode>FGSEN</deptcode><abstract>Perovskite solar cells have emerged as a promising and highly efficient solar technology. Despite efficiencies continuing to climb, the prospect of industrial manufacture is hampered by concerns regarding the safety and sustainability of the solvents used in lab scale manufacture. In this paper, we aim to present a methodology for green solvent selection informed by EHS considerations from the Chem-21 guide for succesful methylammonium lead triiodide (MAPbI3) precursor dissolution. Through the use of this methodology we present a N,N-dimethylformamide (DMF)-free alternative solvent system for deposition of MAPbI3 precursors (MAI and PbI2) consisting of dimethylsulfoxide (DMSO), dimethylpropyleneurea (DMPU), 2-methyltetrahydrofuran (2-MeTHF) and ethanol (EtOH). We have investigated 3 candidate solutions with slightly different compositions of these four solvents, all of which produce dense, uniform and pinhole-free perovskite films via spin coating. All three candidate solutions (A-C) match the average device efficiencies of the DMF/DMSO contol devices (12.4%) with Candidate A, which consists of 40% DMSO, 30 % DMPU, 20% 2-MeTHF and 10% EtOH (vol%), producing a champion PCE of 16.1% compared to 16.2% for DMF/DMSO (80/20 vol%). Perovskite films cast from the three candidate solutions show improved crystallinity, higher flourescence emission, and improved crystal size uniformity than those cast from DMF/DMSO. This work aims to: highlight the key solvent parameters which determine effective MAPbI3 precursor dissolution; provide a set of criteria for appropriate alternative solvent selection; and demonstrate the application of green chemistry principles to solvent selection for perovskite photovoltaic manufacturing.</abstract><type>Journal Article</type><journal>Green Chemistry</journal><volume>23</volume><journalNumber>6</journalNumber><paginationStart>2471</paginationStart><paginationEnd>2486</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1463-9262</issnPrint><issnElectronic>1463-9270</issnElectronic><keywords/><publishedDay>11</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-03-11</publishedDate><doi>10.1039/d1gc00079a</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC (EP/R016666/1 and EP/S001336/1), EPSRC and Innovate UK for the SPECIFIC Innovation and Knowledge Centre and the European Regional Development Fund through the Welsh Government for support to the S&#xEA;r Solar program, EPSRC GCRF SUNRISE project (EP/P032591/1). European Union Horizon 2020 Marie Sklodowska&#x2014;Curie grant agreement no 764787, Swansea University College of Engineering AIM Facility, funded in part by the EPSRC (EP/M028267/1).</funders><projectreference/><lastEdited>2022-11-24T15:28:15.1934452</lastEdited><Created>2021-03-12T14:18:15.0460869</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Alex</firstname><surname>Doolin</surname><order>1</order></author><author><firstname>Rhys G.</firstname><surname>Charles</surname><orcid>0000-0003-1886-378X</orcid><order>2</order></author><author><firstname>Catherine S. P. De</firstname><surname>Castro</surname><order>3</order></author><author><firstname>Rodrigo</firstname><surname>Garcia Rodriguez</surname><order>4</order></author><author><firstname>Emmanuel</firstname><surname>Pean</surname><order>5</order></author><author><firstname>Rahul</firstname><surname>Patidar</surname><order>6</order></author><author><firstname>Tom O.</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>7</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><orcid>0000-0001-9887-2007</orcid><order>8</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>9</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>10</order></author></authors><documents><document><filename>56436__19553__39f8a19b008048e18dccb7aede0c2b57.pdf</filename><originalFilename>56436.pdf</originalFilename><uploaded>2021-03-25T09:12:33.9078102</uploaded><type>Output</type><contentLength>3054702</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution-NonCommercial 3.0 Unported License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-11-24T15:28:15.1934452 v2 56436 2021-03-12 Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells 680f34719d200ba8748cea37ee929927 Alex Doolin Alex Doolin true false 1ff66fa61714afa2dd8bdae1769a5d21 0000-0003-1886-378X Rhys G. Charles Rhys G. Charles true true fb0f6e1eeb02aedee895b457faa35445 Rodrigo Garcia Rodriguez Rodrigo Garcia Rodriguez true false fe9108445b985e2687ca3ccfc5c73812 Emmanuel Pean Emmanuel Pean true false aa7f3b2aa6daa1c80cad60a4dd59055b Rahul Patidar Rahul Patidar true false 2c5194f421c9fe645b6115c20f5cf9ad 0000-0002-5851-8713 Tom O. Dunlop Tom O. Dunlop true true 4dc059714847cb22ed922ab058950560 0000-0001-9887-2007 Cecile Charbonneau Cecile Charbonneau true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false 2021-03-12 FGSEN Perovskite solar cells have emerged as a promising and highly efficient solar technology. Despite efficiencies continuing to climb, the prospect of industrial manufacture is hampered by concerns regarding the safety and sustainability of the solvents used in lab scale manufacture. In this paper, we aim to present a methodology for green solvent selection informed by EHS considerations from the Chem-21 guide for succesful methylammonium lead triiodide (MAPbI3) precursor dissolution. Through the use of this methodology we present a N,N-dimethylformamide (DMF)-free alternative solvent system for deposition of MAPbI3 precursors (MAI and PbI2) consisting of dimethylsulfoxide (DMSO), dimethylpropyleneurea (DMPU), 2-methyltetrahydrofuran (2-MeTHF) and ethanol (EtOH). We have investigated 3 candidate solutions with slightly different compositions of these four solvents, all of which produce dense, uniform and pinhole-free perovskite films via spin coating. All three candidate solutions (A-C) match the average device efficiencies of the DMF/DMSO contol devices (12.4%) with Candidate A, which consists of 40% DMSO, 30 % DMPU, 20% 2-MeTHF and 10% EtOH (vol%), producing a champion PCE of 16.1% compared to 16.2% for DMF/DMSO (80/20 vol%). Perovskite films cast from the three candidate solutions show improved crystallinity, higher flourescence emission, and improved crystal size uniformity than those cast from DMF/DMSO. This work aims to: highlight the key solvent parameters which determine effective MAPbI3 precursor dissolution; provide a set of criteria for appropriate alternative solvent selection; and demonstrate the application of green chemistry principles to solvent selection for perovskite photovoltaic manufacturing. Journal Article Green Chemistry 23 6 2471 2486 Royal Society of Chemistry (RSC) 1463-9262 1463-9270 11 3 2021 2021-03-11 10.1039/d1gc00079a COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University EPSRC (EP/R016666/1 and EP/S001336/1), EPSRC and Innovate UK for the SPECIFIC Innovation and Knowledge Centre and the European Regional Development Fund through the Welsh Government for support to the Sêr Solar program, EPSRC GCRF SUNRISE project (EP/P032591/1). European Union Horizon 2020 Marie Sklodowska—Curie grant agreement no 764787, Swansea University College of Engineering AIM Facility, funded in part by the EPSRC (EP/M028267/1). 2022-11-24T15:28:15.1934452 2021-03-12T14:18:15.0460869 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Alex Doolin 1 Rhys G. Charles 0000-0003-1886-378X 2 Catherine S. P. De Castro 3 Rodrigo Garcia Rodriguez 4 Emmanuel Pean 5 Rahul Patidar 6 Tom O. Dunlop 0000-0002-5851-8713 7 Cecile Charbonneau 0000-0001-9887-2007 8 Trystan Watson 0000-0002-8015-1436 9 Matthew Davies 0000-0003-2595-5121 10 56436__19553__39f8a19b008048e18dccb7aede0c2b57.pdf 56436.pdf 2021-03-25T09:12:33.9078102 Output 3054702 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution-NonCommercial 3.0 Unported License true eng http://creativecommons.org/licenses/by-nc/3.0/
title Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
spellingShingle Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
Alex Doolin
Rhys G. Charles
Rodrigo Garcia Rodriguez
Emmanuel Pean
Rahul Patidar
Tom O. Dunlop
Cecile Charbonneau
Trystan Watson
Matthew Davies
title_short Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
title_full Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
title_fullStr Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
title_full_unstemmed Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
title_sort Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI3) perovskite solar cells
author_id_str_mv 680f34719d200ba8748cea37ee929927
1ff66fa61714afa2dd8bdae1769a5d21
fb0f6e1eeb02aedee895b457faa35445
fe9108445b985e2687ca3ccfc5c73812
aa7f3b2aa6daa1c80cad60a4dd59055b
2c5194f421c9fe645b6115c20f5cf9ad
4dc059714847cb22ed922ab058950560
a210327b52472cfe8df9b8108d661457
4ad478e342120ca3434657eb13527636
author_id_fullname_str_mv 680f34719d200ba8748cea37ee929927_***_Alex Doolin
1ff66fa61714afa2dd8bdae1769a5d21_***_Rhys G. Charles
fb0f6e1eeb02aedee895b457faa35445_***_Rodrigo Garcia Rodriguez
fe9108445b985e2687ca3ccfc5c73812_***_Emmanuel Pean
aa7f3b2aa6daa1c80cad60a4dd59055b_***_Rahul Patidar
2c5194f421c9fe645b6115c20f5cf9ad_***_Tom O. Dunlop
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
4ad478e342120ca3434657eb13527636_***_Matthew Davies
author Alex Doolin
Rhys G. Charles
Rodrigo Garcia Rodriguez
Emmanuel Pean
Rahul Patidar
Tom O. Dunlop
Cecile Charbonneau
Trystan Watson
Matthew Davies
author2 Alex Doolin
Rhys G. Charles
Catherine S. P. De Castro
Rodrigo Garcia Rodriguez
Emmanuel Pean
Rahul Patidar
Tom O. Dunlop
Cecile Charbonneau
Trystan Watson
Matthew Davies
format Journal article
container_title Green Chemistry
container_volume 23
container_issue 6
container_start_page 2471
publishDate 2021
institution Swansea University
issn 1463-9262
1463-9270
doi_str_mv 10.1039/d1gc00079a
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Perovskite solar cells have emerged as a promising and highly efficient solar technology. Despite efficiencies continuing to climb, the prospect of industrial manufacture is hampered by concerns regarding the safety and sustainability of the solvents used in lab scale manufacture. In this paper, we aim to present a methodology for green solvent selection informed by EHS considerations from the Chem-21 guide for succesful methylammonium lead triiodide (MAPbI3) precursor dissolution. Through the use of this methodology we present a N,N-dimethylformamide (DMF)-free alternative solvent system for deposition of MAPbI3 precursors (MAI and PbI2) consisting of dimethylsulfoxide (DMSO), dimethylpropyleneurea (DMPU), 2-methyltetrahydrofuran (2-MeTHF) and ethanol (EtOH). We have investigated 3 candidate solutions with slightly different compositions of these four solvents, all of which produce dense, uniform and pinhole-free perovskite films via spin coating. All three candidate solutions (A-C) match the average device efficiencies of the DMF/DMSO contol devices (12.4%) with Candidate A, which consists of 40% DMSO, 30 % DMPU, 20% 2-MeTHF and 10% EtOH (vol%), producing a champion PCE of 16.1% compared to 16.2% for DMF/DMSO (80/20 vol%). Perovskite films cast from the three candidate solutions show improved crystallinity, higher flourescence emission, and improved crystal size uniformity than those cast from DMF/DMSO. This work aims to: highlight the key solvent parameters which determine effective MAPbI3 precursor dissolution; provide a set of criteria for appropriate alternative solvent selection; and demonstrate the application of green chemistry principles to solvent selection for perovskite photovoltaic manufacturing.
published_date 2021-03-11T04:11:23Z
_version_ 1763753783580426240
score 11.036553