Journal article 825 views 85 downloads
Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems
Epigenetics, Volume: 17, Issue: 13, Pages: 1 - 10
Swansea University Authors: Waldir Miron Berbel Filho, Carlos Garcia De Leaniz , Carlos Rodriquez Lopez, Sofia Consuegra del Olmo
-
PDF | Version of Record
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
Download (1.56MB)
DOI (Published version): 10.1080/15592294.2022.2123014
Abstract
Hybridisation is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between g...
Published in: | Epigenetics |
---|---|
ISSN: | 1559-2294 1559-2308 |
Published: |
Informa UK Limited
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56110 |
Abstract: |
Hybridisation is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between genetic background and methylation patterns in natural hybrids of two genetically divergent fish species with different mating systems, Kryptolebias hermaphroditus (self-fertilising) and K. ocellatus (outcrossing). Co-existing parental species displayed highly distinct genetic (SNPs) and methylation patterns (37,000 differentially methylated cytosines). Hybrids had predominantly intermediate methylation patterns (88.5% of the sites) suggesting additive effects, as expected from hybridisation between genetically distant species. The large number of differentially methylated cytosines between hybrids and parental species (n = 5,800) suggests that hybridisation may play a role in increasing genetic and epigenetic variation. Although most of the observed epigenetic variation was additive and had a strong genetic component, we also found a small percentage of non-additive, potentially stochastic, methylation differences which might act as an evolutionary bet-hedging strategy and increase fitness under environmental instability. |
---|---|
Keywords: |
DNA methylation; selffertilization; outcrossing; epigenetic diversity; mangrove killifish |
College: |
Faculty of Science and Engineering |
Funders: |
This work was supported by the CNPQ [233161/2014-7]; National Geographic Society [W461-16]. |
Issue: |
13 |
Start Page: |
1 |
End Page: |
10 |