No Cover Image

Journal article 825 views 85 downloads

Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems

Waldir Miron Berbel Filho, George Pacheco Orcid Logo, Mateus G. Lira Orcid Logo, Carlos Garcia De Leaniz Orcid Logo, Sergio M. Q. Lima Orcid Logo, Carlos Rodriquez Lopez, Jia Zhou, Sofia Consuegra del Olmo Orcid Logo

Epigenetics, Volume: 17, Issue: 13, Pages: 1 - 10

Swansea University Authors: Waldir Miron Berbel Filho, Carlos Garcia De Leaniz Orcid Logo, Carlos Rodriquez Lopez, Sofia Consuegra del Olmo Orcid Logo

  • 56110.VOR.pdf

    PDF | Version of Record

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License

    Download (1.56MB)

Abstract

Hybridisation is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between g...

Full description

Published in: Epigenetics
ISSN: 1559-2294 1559-2308
Published: Informa UK Limited 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56110
Abstract: Hybridisation is a major source of evolutionary innovation. In plants, epigenetic mechanisms can help to stabilize hybrid genomes and contribute to reproductive isolation, but the relationship between genetic and epigenetic changes in animal hybrids is unclear. We analysed the relationship between genetic background and methylation patterns in natural hybrids of two genetically divergent fish species with different mating systems, Kryptolebias hermaphroditus (self-fertilising) and K. ocellatus (outcrossing). Co-existing parental species displayed highly distinct genetic (SNPs) and methylation patterns (37,000 differentially methylated cytosines). Hybrids had predominantly intermediate methylation patterns (88.5% of the sites) suggesting additive effects, as expected from hybridisation between genetically distant species. The large number of differentially methylated cytosines between hybrids and parental species (n = 5,800) suggests that hybridisation may play a role in increasing genetic and epigenetic variation. Although most of the observed epigenetic variation was additive and had a strong genetic component, we also found a small percentage of non-additive, potentially stochastic, methylation differences which might act as an evolutionary bet-hedging strategy and increase fitness under environmental instability.
Keywords: DNA methylation; selffertilization; outcrossing; epigenetic diversity; mangrove killifish
College: Faculty of Science and Engineering
Funders: This work was supported by the CNPQ [233161/2014-7]; National Geographic Society [W461-16].
Issue: 13
Start Page: 1
End Page: 10