No Cover Image

Journal article 1150 views 157 downloads

On the poro-elastic models for microvascular blood flow resistance: An in vitro validation

Alberto Coccarelli Orcid Logo, Supratim Saha, Tanjeri Purushotham, K. Arul Prakash, Perumal Nithiarasu Orcid Logo

Journal of Biomechanics, Volume: 117, Start page: 110241

Swansea University Authors: Alberto Coccarelli Orcid Logo, Perumal Nithiarasu Orcid Logo

  • 56004.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (924.47KB)

Abstract

Nowadays, adequate and accurate representation of the microvascular flow resistance constitutes one of the major challenges in computational haemodynamic studies. In this work, a theoretical, porous media framework, ultimately designed for representing downstream resistance, is presented and compare...

Full description

Published in: Journal of Biomechanics
ISSN: 0021-9290
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56004
Abstract: Nowadays, adequate and accurate representation of the microvascular flow resistance constitutes one of the major challenges in computational haemodynamic studies. In this work, a theoretical, porous media framework, ultimately designed for representing downstream resistance, is presented and compared against an in vitro experimental results. The resistor consists of a poro-elastic tube, with either a constant or variable porosity profile in space. The underlying physics, characterizing the fluid flow through the porous media, is analysed by considering flow variables at different network locations. Backward reflections, originated in the reservoir of the in vitro model, are accounted for through a reflection coefficient imposed as an outflow network condition. The simulation results are in good agreement with the measurements for both the homogenous and heterogeneous porosity conditions. In addition, the comparison allows identification of the range of values representing experimental reservoir reflection coefficients. The pressure drops across the heterogeneous porous media increases with respect to the simpler configuration, whilst flow remains almost unchanged. The effect of some fluid network features, such as tube Young’s modulus and fluid viscosity, on the theoretical results is also elucidated, providing a reference for the and simulation of different microvascular conditions.
Keywords: Microcirculation, Flow Resistance, Porous Media, Outflow Boundary Conditions, Haemodynamics
College: Faculty of Science and Engineering
Start Page: 110241