Journal article 1450 views 284 downloads
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise
Applied Mathematics Letters, Volume: 115, Start page: 106973
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (312.07KB)
DOI (Published version): 10.1016/j.aml.2020.106973
Abstract
We study L^p-strong convergence for coupled stochastic differential equations (SDEs) driven by Lévy noise with non-Lipschitz coefficients. Utilizing Khasminkii’s time discretization technique, the Kunita’s first inequality and Bihari’s inequality, we show that the slow solution processes converge st...
| Published in: | Applied Mathematics Letters |
|---|---|
| ISSN: | 0893-9659 |
| Published: |
Elsevier BV
2021
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa55932 |
| first_indexed |
2020-12-27T12:16:17Z |
|---|---|
| last_indexed |
2022-01-30T04:19:22Z |
| id |
cronfa55932 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-01-29T10:20:03.5616084</datestamp><bib-version>v2</bib-version><id>55932</id><entry>2020-12-27</entry><title>On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-12-27</date><abstract>We study L^p-strong convergence for coupled stochastic differential equations (SDEs) driven by Lévy noise with non-Lipschitz coefficients. Utilizing Khasminkii’s time discretization technique, the Kunita’s first inequality and Bihari’s inequality, we show that the slow solution processes converge strongly in L^p to the solution of the corresponding averaged equation.</abstract><type>Journal Article</type><journal>Applied Mathematics Letters</journal><volume>115</volume><journalNumber/><paginationStart>106973</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0893-9659</issnPrint><issnElectronic/><keywords>Slow-fast systems; Averaging principle; non-Lipschitz coefficients; Levy noise.</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-01</publishedDate><doi>10.1016/j.aml.2020.106973</doi><url>http://dx.doi.org/10.1016/j.aml.2020.106973</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-01-29T10:20:03.5616084</lastEdited><Created>2020-12-27T12:06:01.4283215</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Yong</firstname><surname>Xu</surname><order>1</order></author><author><firstname>Hongge</firstname><surname>Yue</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>55932__19119__9bcb539af69f41d5b025c1fd2f20ff8c.pdf</filename><originalFilename>55932.pdf</originalFilename><uploaded>2021-01-18T14:44:30.7223952</uploaded><type>Output</type><contentLength>319561</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-12-30T00:00:00.0000000</embargoDate><documentNotes>©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2022-01-29T10:20:03.5616084 v2 55932 2020-12-27 On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2020-12-27 We study L^p-strong convergence for coupled stochastic differential equations (SDEs) driven by Lévy noise with non-Lipschitz coefficients. Utilizing Khasminkii’s time discretization technique, the Kunita’s first inequality and Bihari’s inequality, we show that the slow solution processes converge strongly in L^p to the solution of the corresponding averaged equation. Journal Article Applied Mathematics Letters 115 106973 Elsevier BV 0893-9659 Slow-fast systems; Averaging principle; non-Lipschitz coefficients; Levy noise. 1 5 2021 2021-05-01 10.1016/j.aml.2020.106973 http://dx.doi.org/10.1016/j.aml.2020.106973 COLLEGE NANME COLLEGE CODE Swansea University 2022-01-29T10:20:03.5616084 2020-12-27T12:06:01.4283215 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Yong Xu 1 Hongge Yue 2 Jiang-lun Wu 3 55932__19119__9bcb539af69f41d5b025c1fd2f20ff8c.pdf 55932.pdf 2021-01-18T14:44:30.7223952 Output 319561 application/pdf Accepted Manuscript true 2021-12-30T00:00:00.0000000 ©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| title |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| spellingShingle |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise Jiang-lun Wu |
| title_short |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| title_full |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| title_fullStr |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| title_full_unstemmed |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| title_sort |
On Lp-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise |
| author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
| author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
| author |
Jiang-lun Wu |
| author2 |
Yong Xu Hongge Yue Jiang-lun Wu |
| format |
Journal article |
| container_title |
Applied Mathematics Letters |
| container_volume |
115 |
| container_start_page |
106973 |
| publishDate |
2021 |
| institution |
Swansea University |
| issn |
0893-9659 |
| doi_str_mv |
10.1016/j.aml.2020.106973 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| url |
http://dx.doi.org/10.1016/j.aml.2020.106973 |
| document_store_str |
1 |
| active_str |
0 |
| description |
We study L^p-strong convergence for coupled stochastic differential equations (SDEs) driven by Lévy noise with non-Lipschitz coefficients. Utilizing Khasminkii’s time discretization technique, the Kunita’s first inequality and Bihari’s inequality, we show that the slow solution processes converge strongly in L^p to the solution of the corresponding averaged equation. |
| published_date |
2021-05-01T04:48:38Z |
| _version_ |
1851638958726840320 |
| score |
11.089884 |

