Journal article 877 views 465 downloads
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues
Computer Methods in Applied Mechanics and Engineering, Volume: 373, Start page: 113493
Swansea University Author: Yuntian Feng
-
PDF | Accepted Manuscript
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Download (27.5MB)
DOI (Published version): 10.1016/j.cma.2020.113493
Abstract
The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to b...
Published in: | Computer Methods in Applied Mechanics and Engineering |
---|---|
ISSN: | 0045-7825 |
Published: |
Elsevier BV
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55381 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-10-08T12:16:33Z |
---|---|
last_indexed |
2023-01-11T14:33:55Z |
id |
cronfa55381 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-31T18:08:59.6722636</datestamp><bib-version>v2</bib-version><id>55381</id><entry>2020-10-08</entry><title>An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-08</date><deptcode>CIVL</deptcode><abstract>The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems.</abstract><type>Journal Article</type><journal>Computer Methods in Applied Mechanics and Engineering</journal><volume>373</volume><journalNumber/><paginationStart>113493</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0045-7825</issnPrint><issnElectronic/><keywords>Concave shapes, Energy conservation, Contact volume based contact model, Volumetric mesh representation, Triangular mesh representation</keywords><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-01-01</publishedDate><doi>10.1016/j.cma.2020.113493</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-10-31T18:08:59.6722636</lastEdited><Created>2020-10-08T13:14:43.7529958</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>1</order></author></authors><documents><document><filename>55381__18373__61542b81c8004d37907144d974798735.pdf</filename><originalFilename>55381.pdf</originalFilename><uploaded>2020-10-08T13:16:13.4526965</uploaded><type>Output</type><contentLength>28840361</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-11-02T00:00:00.0000000</embargoDate><documentNotes>© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-31T18:08:59.6722636 v2 55381 2020-10-08 An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2020-10-08 CIVL The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems. Journal Article Computer Methods in Applied Mechanics and Engineering 373 113493 Elsevier BV 0045-7825 Concave shapes, Energy conservation, Contact volume based contact model, Volumetric mesh representation, Triangular mesh representation 1 1 2021 2021-01-01 10.1016/j.cma.2020.113493 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2022-10-31T18:08:59.6722636 2020-10-08T13:14:43.7529958 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Yuntian Feng 0000-0002-6396-8698 1 55381__18373__61542b81c8004d37907144d974798735.pdf 55381.pdf 2020-10-08T13:16:13.4526965 Output 28840361 application/pdf Accepted Manuscript true 2021-11-02T00:00:00.0000000 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
spellingShingle |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues Yuntian Feng |
title_short |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
title_full |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
title_fullStr |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
title_full_unstemmed |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
title_sort |
An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng |
author |
Yuntian Feng |
author2 |
Yuntian Feng |
format |
Journal article |
container_title |
Computer Methods in Applied Mechanics and Engineering |
container_volume |
373 |
container_start_page |
113493 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0045-7825 |
doi_str_mv |
10.1016/j.cma.2020.113493 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems. |
published_date |
2021-01-01T04:09:32Z |
_version_ |
1763753667154935808 |
score |
11.037056 |