No Cover Image

Journal article 590 views 94 downloads

Viral ecogenomics across the Porifera

Cecília Pascelli, Patrick W. Laffy, Emmanuelle Botté, Marija Kupresanin, Thomas Rattei, Miguel Lurgi Rivera Orcid Logo, Timothy Ravasi, Nicole S. Webster

Microbiome, Volume: 8, Issue: 1

Swansea University Author: Miguel Lurgi Rivera Orcid Logo

  • s40168-020-00919-5.pdf

    PDF | Version of Record

    © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (4.04MB)

Abstract

BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model...

Full description

Published in: Microbiome
ISSN: 2049-2618
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55350
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts.
Keywords: Viromics, Viral ecology, Functional diversity, AMGs, Coral reef sponges
College: Faculty of Science and Engineering
Issue: 1