No Cover Image

Journal article 637 views 77 downloads

Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

Yifan Dong, Vasileios C. Nikolis, Felix Talnack, Yi-Chun Chin, Johannes Benduhn, Giacomo Londi, Jonas Kublitski, Xijia Zheng, Stefan C. B. Mannsfeld, Donato Spoltore, Luca Muccioli, Jing Li, Xavier Blase, David Beljonne, Ji-Seon Kim, Artem A. Bakulin, Gabriele D’Avino, James Durrant Orcid Logo, Koen Vandewal

Nature Communications, Volume: 11, Issue: 1

Swansea University Author: James Durrant Orcid Logo

  • 55253.pdf

    PDF | Version of Record

    © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License

    Download (1.81MB)

Abstract

Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystal...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55253
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-09-24T09:36:56Z
last_indexed 2021-08-30T03:17:11Z
id cronfa55253
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-08-29T15:56:19.6334480</datestamp><bib-version>v2</bib-version><id>55253</id><entry>2020-09-24</entry><title>Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-09-24</date><deptcode>MTLS</deptcode><abstract>Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of &#x3B1;-sexithiophene (&#x3B1;-6T) films results in efficient charge generation. This leads to &#x3B1;-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61&#x2009;V. Morphological, photoemission, and modelling studies show that boundaries between &#x3B1;-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4&#x2009;eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>11</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1038/s41467-020-18439-z</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC</funders><projectreference>EP/P032591/1</projectreference><lastEdited>2021-08-29T15:56:19.6334480</lastEdited><Created>2020-09-24T10:34:45.2621898</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Yifan</firstname><surname>Dong</surname><order>1</order></author><author><firstname>Vasileios C.</firstname><surname>Nikolis</surname><order>2</order></author><author><firstname>Felix</firstname><surname>Talnack</surname><order>3</order></author><author><firstname>Yi-Chun</firstname><surname>Chin</surname><order>4</order></author><author><firstname>Johannes</firstname><surname>Benduhn</surname><order>5</order></author><author><firstname>Giacomo</firstname><surname>Londi</surname><order>6</order></author><author><firstname>Jonas</firstname><surname>Kublitski</surname><order>7</order></author><author><firstname>Xijia</firstname><surname>Zheng</surname><order>8</order></author><author><firstname>Stefan C. B.</firstname><surname>Mannsfeld</surname><order>9</order></author><author><firstname>Donato</firstname><surname>Spoltore</surname><order>10</order></author><author><firstname>Luca</firstname><surname>Muccioli</surname><order>11</order></author><author><firstname>Jing</firstname><surname>Li</surname><order>12</order></author><author><firstname>Xavier</firstname><surname>Blase</surname><order>13</order></author><author><firstname>David</firstname><surname>Beljonne</surname><order>14</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><order>15</order></author><author><firstname>Artem A.</firstname><surname>Bakulin</surname><order>16</order></author><author><firstname>Gabriele</firstname><surname>D&#x2019;Avino</surname><order>17</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>18</order></author><author><firstname>Koen</firstname><surname>Vandewal</surname><order>19</order></author></authors><documents><document><filename>55253__18241__2ffb773b158e4adda93ca234bbc1c1d6.pdf</filename><originalFilename>55253.pdf</originalFilename><uploaded>2020-09-24T10:36:18.7221793</uploaded><type>Output</type><contentLength>1895535</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-08-29T15:56:19.6334480 v2 55253 2020-09-24 Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-09-24 MTLS Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control. Journal Article Nature Communications 11 1 Springer Science and Business Media LLC 2041-1723 1 12 2020 2020-12-01 10.1038/s41467-020-18439-z COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University EPSRC EP/P032591/1 2021-08-29T15:56:19.6334480 2020-09-24T10:34:45.2621898 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Yifan Dong 1 Vasileios C. Nikolis 2 Felix Talnack 3 Yi-Chun Chin 4 Johannes Benduhn 5 Giacomo Londi 6 Jonas Kublitski 7 Xijia Zheng 8 Stefan C. B. Mannsfeld 9 Donato Spoltore 10 Luca Muccioli 11 Jing Li 12 Xavier Blase 13 David Beljonne 14 Ji-Seon Kim 15 Artem A. Bakulin 16 Gabriele D’Avino 17 James Durrant 0000-0001-8353-7345 18 Koen Vandewal 19 55253__18241__2ffb773b158e4adda93ca234bbc1c1d6.pdf 55253.pdf 2020-09-24T10:36:18.7221793 Output 1895535 application/pdf Version of Record true © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License true eng http://creativecommons.org/licenses/by/4.0/
title Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
spellingShingle Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
James Durrant
title_short Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
title_full Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
title_fullStr Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
title_full_unstemmed Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
title_sort Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
author_id_str_mv f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author James Durrant
author2 Yifan Dong
Vasileios C. Nikolis
Felix Talnack
Yi-Chun Chin
Johannes Benduhn
Giacomo Londi
Jonas Kublitski
Xijia Zheng
Stefan C. B. Mannsfeld
Donato Spoltore
Luca Muccioli
Jing Li
Xavier Blase
David Beljonne
Ji-Seon Kim
Artem A. Bakulin
Gabriele D’Avino
James Durrant
Koen Vandewal
format Journal article
container_title Nature Communications
container_volume 11
container_issue 1
publishDate 2020
institution Swansea University
issn 2041-1723
doi_str_mv 10.1038/s41467-020-18439-z
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.
published_date 2020-12-01T04:09:20Z
_version_ 1763753654352871424
score 11.013799