Journal article 968 views 97 downloads
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells
Nature Communications, Volume: 11, Issue: 1
Swansea University Author: James Durrant
-
PDF | Version of Record
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License
Download (1.81MB)
DOI (Published version): 10.1038/s41467-020-18439-z
Abstract
Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystal...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55253 |
first_indexed |
2020-09-24T09:36:56Z |
---|---|
last_indexed |
2021-08-30T03:17:11Z |
id |
cronfa55253 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-08-29T15:56:19.6334480</datestamp><bib-version>v2</bib-version><id>55253</id><entry>2020-09-24</entry><title>Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-09-24</date><deptcode>EAAS</deptcode><abstract>Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>11</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1038/s41467-020-18439-z</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC</funders><projectreference>EP/P032591/1</projectreference><lastEdited>2021-08-29T15:56:19.6334480</lastEdited><Created>2020-09-24T10:34:45.2621898</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Yifan</firstname><surname>Dong</surname><order>1</order></author><author><firstname>Vasileios C.</firstname><surname>Nikolis</surname><order>2</order></author><author><firstname>Felix</firstname><surname>Talnack</surname><order>3</order></author><author><firstname>Yi-Chun</firstname><surname>Chin</surname><order>4</order></author><author><firstname>Johannes</firstname><surname>Benduhn</surname><order>5</order></author><author><firstname>Giacomo</firstname><surname>Londi</surname><order>6</order></author><author><firstname>Jonas</firstname><surname>Kublitski</surname><order>7</order></author><author><firstname>Xijia</firstname><surname>Zheng</surname><order>8</order></author><author><firstname>Stefan C. B.</firstname><surname>Mannsfeld</surname><order>9</order></author><author><firstname>Donato</firstname><surname>Spoltore</surname><order>10</order></author><author><firstname>Luca</firstname><surname>Muccioli</surname><order>11</order></author><author><firstname>Jing</firstname><surname>Li</surname><order>12</order></author><author><firstname>Xavier</firstname><surname>Blase</surname><order>13</order></author><author><firstname>David</firstname><surname>Beljonne</surname><order>14</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><order>15</order></author><author><firstname>Artem A.</firstname><surname>Bakulin</surname><order>16</order></author><author><firstname>Gabriele</firstname><surname>D’Avino</surname><order>17</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>18</order></author><author><firstname>Koen</firstname><surname>Vandewal</surname><order>19</order></author></authors><documents><document><filename>55253__18241__2ffb773b158e4adda93ca234bbc1c1d6.pdf</filename><originalFilename>55253.pdf</originalFilename><uploaded>2020-09-24T10:36:18.7221793</uploaded><type>Output</type><contentLength>1895535</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-08-29T15:56:19.6334480 v2 55253 2020-09-24 Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-09-24 EAAS Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control. Journal Article Nature Communications 11 1 Springer Science and Business Media LLC 2041-1723 1 12 2020 2020-12-01 10.1038/s41467-020-18439-z COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University EPSRC EP/P032591/1 2021-08-29T15:56:19.6334480 2020-09-24T10:34:45.2621898 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Yifan Dong 1 Vasileios C. Nikolis 2 Felix Talnack 3 Yi-Chun Chin 4 Johannes Benduhn 5 Giacomo Londi 6 Jonas Kublitski 7 Xijia Zheng 8 Stefan C. B. Mannsfeld 9 Donato Spoltore 10 Luca Muccioli 11 Jing Li 12 Xavier Blase 13 David Beljonne 14 Ji-Seon Kim 15 Artem A. Bakulin 16 Gabriele D’Avino 17 James Durrant 0000-0001-8353-7345 18 Koen Vandewal 19 55253__18241__2ffb773b158e4adda93ca234bbc1c1d6.pdf 55253.pdf 2020-09-24T10:36:18.7221793 Output 1895535 application/pdf Version of Record true © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
spellingShingle |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells James Durrant |
title_short |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
title_full |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
title_fullStr |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
title_full_unstemmed |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
title_sort |
Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells |
author_id_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a |
author_id_fullname_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant |
author |
James Durrant |
author2 |
Yifan Dong Vasileios C. Nikolis Felix Talnack Yi-Chun Chin Johannes Benduhn Giacomo Londi Jonas Kublitski Xijia Zheng Stefan C. B. Mannsfeld Donato Spoltore Luca Muccioli Jing Li Xavier Blase David Beljonne Ji-Seon Kim Artem A. Bakulin Gabriele D’Avino James Durrant Koen Vandewal |
format |
Journal article |
container_title |
Nature Communications |
container_volume |
11 |
container_issue |
1 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2041-1723 |
doi_str_mv |
10.1038/s41467-020-18439-z |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control. |
published_date |
2020-12-01T05:00:32Z |
_version_ |
1821380321414742016 |
score |
11.29607 |