Journal article 518 views 108 downloads
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data?
International Journal of Population Data Science, Volume: 5, Issue: 1
Swansea University Authors: Ashley Akbari , Ronan Lyons
-
PDF | Version of Record
This work is licensed under a Creative Commons Attribution 4.0 International License.
Download (412.64KB)
DOI (Published version): 10.23889/ijpds.v5i1.1151
Abstract
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data?
Published in: | International Journal of Population Data Science |
---|---|
ISSN: | 2399-4908 |
Published: |
Swansea University
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54467 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-07-22T12:51:56Z |
---|---|
last_indexed |
2020-07-22T19:17:36Z |
id |
cronfa54467 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>54467</id><entry>2020-06-12</entry><title>How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data?</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>83efcf2a9dfcf8b55586999d3d152ac6</sid><ORCID>0000-0001-5225-000X</ORCID><firstname>Ronan</firstname><surname>Lyons</surname><name>Ronan Lyons</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-06-12</date><deptcode>HDAT</deptcode><abstract/><type>Journal Article</type><journal>International Journal of Population Data Science</journal><volume>5</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>12</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-06-12</publishedDate><doi>10.23889/ijpds.v5i1.1151</doi><url/><notes/><college>COLLEGE NANME</college><department>Health Data Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HDAT</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-01-08T11:50:58.3885786</lastEdited><Created>2020-06-12T00:00:00.0000000</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>Tony</firstname><surname>Whiffen</surname><order>1</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>2</order></author><author><firstname>Tony</firstname><surname>Paget</surname><order>3</order></author><author><firstname>Sarah</firstname><surname>Lowe</surname><order>4</order></author><author><firstname>Ronan</firstname><surname>Lyons</surname><orcid>0000-0001-5225-000X</orcid><order>5</order></author></authors><documents><document><filename>54467__17750__ea6815eb98534fab91f0f9913bc3c7df.pdf</filename><originalFilename>54467.pdf</originalFilename><uploaded>2020-07-22T13:50:23.0294933</uploaded><type>Output</type><contentLength>422548</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This work is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 54467 2020-06-12 How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 83efcf2a9dfcf8b55586999d3d152ac6 0000-0001-5225-000X Ronan Lyons Ronan Lyons true false 2020-06-12 HDAT Journal Article International Journal of Population Data Science 5 1 Swansea University 2399-4908 12 6 2020 2020-06-12 10.23889/ijpds.v5i1.1151 COLLEGE NANME Health Data Science COLLEGE CODE HDAT Swansea University 2024-01-08T11:50:58.3885786 2020-06-12T00:00:00.0000000 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science Tony Whiffen 1 Ashley Akbari 0000-0003-0814-0801 2 Tony Paget 3 Sarah Lowe 4 Ronan Lyons 0000-0001-5225-000X 5 54467__17750__ea6815eb98534fab91f0f9913bc3c7df.pdf 54467.pdf 2020-07-22T13:50:23.0294933 Output 422548 application/pdf Version of Record true This work is licensed under a Creative Commons Attribution 4.0 International License. true https://creativecommons.org/licenses/by/4.0/deed.en |
title |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
spellingShingle |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? Ashley Akbari Ronan Lyons |
title_short |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
title_full |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
title_fullStr |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
title_full_unstemmed |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
title_sort |
How effective are population health surveys for estimating prevalence of chronic conditions compared to anonymised clinical data? |
author_id_str_mv |
aa1b025ec0243f708bb5eb0a93d6fb52 83efcf2a9dfcf8b55586999d3d152ac6 |
author_id_fullname_str_mv |
aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari 83efcf2a9dfcf8b55586999d3d152ac6_***_Ronan Lyons |
author |
Ashley Akbari Ronan Lyons |
author2 |
Tony Whiffen Ashley Akbari Tony Paget Sarah Lowe Ronan Lyons |
format |
Journal article |
container_title |
International Journal of Population Data Science |
container_volume |
5 |
container_issue |
1 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2399-4908 |
doi_str_mv |
10.23889/ijpds.v5i1.1151 |
publisher |
Swansea University |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2020-06-12T11:51:00Z |
_version_ |
1787522879679627264 |
score |
11.037603 |