No Cover Image

Journal article 734 views 166 downloads

A linearized consistent mixed displacement-pressure formulation for hyperelasticity

Chennakesava Kadapa Orcid Logo, Mokarram Hossain Orcid Logo

Mechanics of Advanced Materials and Structures, Volume: 29, Issue: 2, Pages: 267 - 284

Swansea University Authors: Chennakesava Kadapa Orcid Logo, Mokarram Hossain Orcid Logo

Abstract

We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-pressure formulation is not only applicable for nearly...

Full description

Published in: Mechanics of Advanced Materials and Structures
ISSN: 1537-6494 1537-6532
Published: Informa UK Limited 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54433
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-06-11T13:09:02Z
last_indexed 2020-07-22T19:17:34Z
id cronfa54433
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>54433</id><entry>2020-06-11</entry><title>A linearized consistent mixed displacement-pressure formulation for hyperelasticity</title><swanseaauthors><author><sid>de01927f8c2c4ad9dcc034c327ac8de1</sid><ORCID>0000-0001-6092-9047</ORCID><firstname>Chennakesava</firstname><surname>Kadapa</surname><name>Chennakesava Kadapa</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>140f4aa5c5ec18ec173c8542a7fddafd</sid><ORCID>0000-0002-4616-1104</ORCID><firstname>Mokarram</firstname><surname>Hossain</surname><name>Mokarram Hossain</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-06-11</date><deptcode>SCS</deptcode><abstract>We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-pressure formulation is not only applicable for nearly and truly incompressible cases but also is consistent in the compressible regime. Furthermore, we prove with analytical derivation and numerical results that the proposed two-field formulation is a simplified and efficient alternative for the three-field displacement-pressure-Jacobian formulation for hyperelastic materials whose strain energy density functions are decomposed into deviatoric and volumetric parts.</abstract><type>Journal Article</type><journal>Mechanics of Advanced Materials and Structures</journal><volume>29</volume><journalNumber>2</journalNumber><paginationStart>267</paginationStart><paginationEnd>284</paginationEnd><publisher>Informa UK Limited</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1537-6494</issnPrint><issnElectronic>1537-6532</issnElectronic><keywords/><publishedDay>14</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-01-14</publishedDate><doi>10.1080/15376494.2020.1762952</doi><url>http://dx.doi.org/10.1080/15376494.2020.1762952</url><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-05-22T15:12:57.6334533</lastEdited><Created>2020-06-11T10:28:48.7348189</Created><path><level id="1"/><level id="2"/></path><authors><author><firstname>Chennakesava</firstname><surname>Kadapa</surname><orcid>0000-0001-6092-9047</orcid><order>1</order></author><author><firstname>Mokarram</firstname><surname>Hossain</surname><orcid>0000-0002-4616-1104</orcid><order>2</order></author></authors><documents><document><filename>54433__17485__003333d700824317a99ed4fa1b63bb75.pdf</filename><originalFilename>54433.pdf</originalFilename><uploaded>2020-06-12T13:47:24.6185738</uploaded><type>Output</type><contentLength>4086267</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-05-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling v2 54433 2020-06-11 A linearized consistent mixed displacement-pressure formulation for hyperelasticity de01927f8c2c4ad9dcc034c327ac8de1 0000-0001-6092-9047 Chennakesava Kadapa Chennakesava Kadapa true false 140f4aa5c5ec18ec173c8542a7fddafd 0000-0002-4616-1104 Mokarram Hossain Mokarram Hossain true false 2020-06-11 SCS We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-pressure formulation is not only applicable for nearly and truly incompressible cases but also is consistent in the compressible regime. Furthermore, we prove with analytical derivation and numerical results that the proposed two-field formulation is a simplified and efficient alternative for the three-field displacement-pressure-Jacobian formulation for hyperelastic materials whose strain energy density functions are decomposed into deviatoric and volumetric parts. Journal Article Mechanics of Advanced Materials and Structures 29 2 267 284 Informa UK Limited 1537-6494 1537-6532 14 1 2022 2022-01-14 10.1080/15376494.2020.1762952 http://dx.doi.org/10.1080/15376494.2020.1762952 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2023-05-22T15:12:57.6334533 2020-06-11T10:28:48.7348189 Chennakesava Kadapa 0000-0001-6092-9047 1 Mokarram Hossain 0000-0002-4616-1104 2 54433__17485__003333d700824317a99ed4fa1b63bb75.pdf 54433.pdf 2020-06-12T13:47:24.6185738 Output 4086267 application/pdf Accepted Manuscript true 2021-05-20T00:00:00.0000000 true
title A linearized consistent mixed displacement-pressure formulation for hyperelasticity
spellingShingle A linearized consistent mixed displacement-pressure formulation for hyperelasticity
Chennakesava Kadapa
Mokarram Hossain
title_short A linearized consistent mixed displacement-pressure formulation for hyperelasticity
title_full A linearized consistent mixed displacement-pressure formulation for hyperelasticity
title_fullStr A linearized consistent mixed displacement-pressure formulation for hyperelasticity
title_full_unstemmed A linearized consistent mixed displacement-pressure formulation for hyperelasticity
title_sort A linearized consistent mixed displacement-pressure formulation for hyperelasticity
author_id_str_mv de01927f8c2c4ad9dcc034c327ac8de1
140f4aa5c5ec18ec173c8542a7fddafd
author_id_fullname_str_mv de01927f8c2c4ad9dcc034c327ac8de1_***_Chennakesava Kadapa
140f4aa5c5ec18ec173c8542a7fddafd_***_Mokarram Hossain
author Chennakesava Kadapa
Mokarram Hossain
author2 Chennakesava Kadapa
Mokarram Hossain
format Journal article
container_title Mechanics of Advanced Materials and Structures
container_volume 29
container_issue 2
container_start_page 267
publishDate 2022
institution Swansea University
issn 1537-6494
1537-6532
doi_str_mv 10.1080/15376494.2020.1762952
publisher Informa UK Limited
url http://dx.doi.org/10.1080/15376494.2020.1762952
document_store_str 1
active_str 0
description We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-pressure formulation is not only applicable for nearly and truly incompressible cases but also is consistent in the compressible regime. Furthermore, we prove with analytical derivation and numerical results that the proposed two-field formulation is a simplified and efficient alternative for the three-field displacement-pressure-Jacobian formulation for hyperelastic materials whose strain energy density functions are decomposed into deviatoric and volumetric parts.
published_date 2022-01-14T15:12:55Z
_version_ 1766603909679284224
score 11.037056