Journal article 1243 views 286 downloads
Dimension of polynomial splines of mixed smoothness on T-meshes
Computer Aided Geometric Design, Volume: 80, Start page: 101880
Swansea University Author:
Nelly Villamizar
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (549.18KB)
DOI (Published version): 10.1016/j.cagd.2020.101880
Abstract
In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present co...
| Published in: | Computer Aided Geometric Design |
|---|---|
| ISSN: | 0167-8396 |
| Published: |
Elsevier BV
2020
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa54305 |
| first_indexed |
2020-05-24T19:07:49Z |
|---|---|
| last_indexed |
2020-06-19T13:10:27Z |
| id |
cronfa54305 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-19T10:31:54.3338346</datestamp><bib-version>v2</bib-version><id>54305</id><entry>2020-05-24</entry><title>Dimension of polynomial splines of mixed smoothness on T-meshes</title><swanseaauthors><author><sid>41572bcee47da6ba274ecd1828fbfef4</sid><ORCID>0000-0002-8741-7225</ORCID><firstname>Nelly</firstname><surname>Villamizar</surname><name>Nelly Villamizar</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-05-24</date><deptcode>MACS</deptcode><abstract>In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present constructive and sufficient conditions that ensure that the smoothness across a subset of the mesh edges can be reduced while maintaining stability of the dimension. The conditions have a simple geometric interpretation. Examples are presented to show the applicability of the results on both hierarchical and non-hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable dimension.</abstract><type>Journal Article</type><journal>Computer Aided Geometric Design</journal><volume>80</volume><paginationStart>101880</paginationStart><publisher>Elsevier BV</publisher><issnPrint>0167-8396</issnPrint><keywords>Splines; T-meshes; Mixed smoothness; Dimension formula; Homological algebra</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-06-01</publishedDate><doi>10.1016/j.cagd.2020.101880</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-19T10:31:54.3338346</lastEdited><Created>2020-05-24T13:58:02.4201912</Created><authors><author><firstname>Deepesh</firstname><surname>Toshniwal</surname><order>1</order></author><author><firstname>Nelly</firstname><surname>Villamizar</surname><orcid>0000-0002-8741-7225</orcid><order>2</order></author></authors><documents><document><filename>54305__17547__f74565eb368b4b80b6105fb087be2e0b.pdf</filename><originalFilename>54305VOR.pdf</originalFilename><uploaded>2020-06-19T10:28:54.7033390</uploaded><type>Output</type><contentLength>562364</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2020-06-19T10:31:54.3338346 v2 54305 2020-05-24 Dimension of polynomial splines of mixed smoothness on T-meshes 41572bcee47da6ba274ecd1828fbfef4 0000-0002-8741-7225 Nelly Villamizar Nelly Villamizar true false 2020-05-24 MACS In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present constructive and sufficient conditions that ensure that the smoothness across a subset of the mesh edges can be reduced while maintaining stability of the dimension. The conditions have a simple geometric interpretation. Examples are presented to show the applicability of the results on both hierarchical and non-hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable dimension. Journal Article Computer Aided Geometric Design 80 101880 Elsevier BV 0167-8396 Splines; T-meshes; Mixed smoothness; Dimension formula; Homological algebra 1 6 2020 2020-06-01 10.1016/j.cagd.2020.101880 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-06-19T10:31:54.3338346 2020-05-24T13:58:02.4201912 Deepesh Toshniwal 1 Nelly Villamizar 0000-0002-8741-7225 2 54305__17547__f74565eb368b4b80b6105fb087be2e0b.pdf 54305VOR.pdf 2020-06-19T10:28:54.7033390 Output 562364 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| spellingShingle |
Dimension of polynomial splines of mixed smoothness on T-meshes Nelly Villamizar |
| title_short |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| title_full |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| title_fullStr |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| title_full_unstemmed |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| title_sort |
Dimension of polynomial splines of mixed smoothness on T-meshes |
| author_id_str_mv |
41572bcee47da6ba274ecd1828fbfef4 |
| author_id_fullname_str_mv |
41572bcee47da6ba274ecd1828fbfef4_***_Nelly Villamizar |
| author |
Nelly Villamizar |
| author2 |
Deepesh Toshniwal Nelly Villamizar |
| format |
Journal article |
| container_title |
Computer Aided Geometric Design |
| container_volume |
80 |
| container_start_page |
101880 |
| publishDate |
2020 |
| institution |
Swansea University |
| issn |
0167-8396 |
| doi_str_mv |
10.1016/j.cagd.2020.101880 |
| publisher |
Elsevier BV |
| document_store_str |
1 |
| active_str |
0 |
| description |
In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present constructive and sufficient conditions that ensure that the smoothness across a subset of the mesh edges can be reduced while maintaining stability of the dimension. The conditions have a simple geometric interpretation. Examples are presented to show the applicability of the results on both hierarchical and non-hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable dimension. |
| published_date |
2020-06-01T04:47:53Z |
| _version_ |
1856984132669669376 |
| score |
11.096068 |

