Journal article 797 views 140 downloads
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
Journal of Materials Chemistry A, Volume: 8, Issue: 17, Pages: 8684 - 8691
Swansea University Author: James Durrant
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution CC-BY Licence.
Download (803.18KB)
DOI (Published version): 10.1039/d0ta01606c
Abstract
We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from singl...
Published in: | Journal of Materials Chemistry A |
---|---|
ISSN: | 2050-7488 2050-7496 |
Published: |
Royal Society of Chemistry (RSC)
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54286 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-05-20T13:08:10Z |
---|---|
last_indexed |
2021-09-22T03:15:27Z |
id |
cronfa54286 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-09-21T15:50:43.4349642</datestamp><bib-version>v2</bib-version><id>54286</id><entry>2020-05-20</entry><title>Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-05-20</date><deptcode>MTLS</deptcode><abstract>We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation.</abstract><type>Journal Article</type><journal>Journal of Materials Chemistry A</journal><volume>8</volume><journalNumber>17</journalNumber><paginationStart>8684</paginationStart><paginationEnd>8691</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-7488</issnPrint><issnElectronic>2050-7496</issnElectronic><keywords/><publishedDay>14</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-14</publishedDate><doi>10.1039/d0ta01606c</doi><url>https://spiral.imperial.ac.uk/handle/10044/1/78013</url><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-21T15:50:43.4349642</lastEdited><Created>2020-05-20T09:39:46.2862570</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Chieh-Ting</firstname><surname>Lin</surname><order>1</order></author><author><firstname>Jonathan</firstname><surname>Ngiam</surname><order>2</order></author><author><firstname>Bob</firstname><surname>Xu</surname><order>3</order></author><author><firstname>Yu-Han</firstname><surname>Chang</surname><order>4</order></author><author><firstname>Tian</firstname><surname>Du</surname><order>5</order></author><author><firstname>Thomas J.</firstname><surname>Macdonald</surname><order>6</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>7</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>8</order></author></authors><documents><document><filename>54286__20958__342f2e90d440463bb5c8c9e865d5b6c2.pdf</filename><originalFilename>54286.VOR.pdf</originalFilename><uploaded>2021-09-21T15:48:34.1129929</uploaded><type>Output</type><contentLength>822456</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Distributed under the terms of a Creative Commons Attribution CC-BY Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-09-21T15:50:43.4349642 v2 54286 2020-05-20 Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-05-20 MTLS We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation. Journal Article Journal of Materials Chemistry A 8 17 8684 8691 Royal Society of Chemistry (RSC) 2050-7488 2050-7496 14 4 2020 2020-04-14 10.1039/d0ta01606c https://spiral.imperial.ac.uk/handle/10044/1/78013 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2021-09-21T15:50:43.4349642 2020-05-20T09:39:46.2862570 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Chieh-Ting Lin 1 Jonathan Ngiam 2 Bob Xu 3 Yu-Han Chang 4 Tian Du 5 Thomas J. Macdonald 6 James Durrant 0000-0001-8353-7345 7 Martyn A. McLachlan 8 54286__20958__342f2e90d440463bb5c8c9e865d5b6c2.pdf 54286.VOR.pdf 2021-09-21T15:48:34.1129929 Output 822456 application/pdf Version of Record true Distributed under the terms of a Creative Commons Attribution CC-BY Licence. true eng https://creativecommons.org/licenses/by/3.0/ |
title |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
spellingShingle |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation James Durrant |
title_short |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
title_full |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
title_fullStr |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
title_full_unstemmed |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
title_sort |
Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation |
author_id_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a |
author_id_fullname_str_mv |
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant |
author |
James Durrant |
author2 |
Chieh-Ting Lin Jonathan Ngiam Bob Xu Yu-Han Chang Tian Du Thomas J. Macdonald James Durrant Martyn A. McLachlan |
format |
Journal article |
container_title |
Journal of Materials Chemistry A |
container_volume |
8 |
container_issue |
17 |
container_start_page |
8684 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2050-7488 2050-7496 |
doi_str_mv |
10.1039/d0ta01606c |
publisher |
Royal Society of Chemistry (RSC) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
url |
https://spiral.imperial.ac.uk/handle/10044/1/78013 |
document_store_str |
1 |
active_str |
0 |
description |
We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation. |
published_date |
2020-04-14T04:07:43Z |
_version_ |
1763753552983883776 |
score |
11.036553 |