No Cover Image

Journal article 646 views 119 downloads

Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation

Chieh-Ting Lin, Jonathan Ngiam, Bob Xu, Yu-Han Chang, Tian Du, Thomas J. Macdonald, James Durrant Orcid Logo, Martyn A. McLachlan

Journal of Materials Chemistry A, Volume: 8, Issue: 17, Pages: 8684 - 8691

Swansea University Author: James Durrant Orcid Logo

  • 54286.VOR.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution CC-BY Licence.

    Download (803.18KB)

Check full text

DOI (Published version): 10.1039/d0ta01606c

Abstract

We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from singl...

Full description

Published in: Journal of Materials Chemistry A
ISSN: 2050-7488 2050-7496
Published: Royal Society of Chemistry (RSC) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54286
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-05-20T13:08:10Z
last_indexed 2021-09-22T03:15:27Z
id cronfa54286
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-09-21T15:50:43.4349642</datestamp><bib-version>v2</bib-version><id>54286</id><entry>2020-05-20</entry><title>Enhancing the operational stability of unencapsulated perovskite solar cells through Cu&#x2013;Ag bilayer electrode incorporation</title><swanseaauthors><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-05-20</date><deptcode>MTLS</deptcode><abstract>We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu&#x2013;Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation.</abstract><type>Journal Article</type><journal>Journal of Materials Chemistry A</journal><volume>8</volume><journalNumber>17</journalNumber><paginationStart>8684</paginationStart><paginationEnd>8691</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2050-7488</issnPrint><issnElectronic>2050-7496</issnElectronic><keywords/><publishedDay>14</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-14</publishedDate><doi>10.1039/d0ta01606c</doi><url>https://spiral.imperial.ac.uk/handle/10044/1/78013</url><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-21T15:50:43.4349642</lastEdited><Created>2020-05-20T09:39:46.2862570</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Chieh-Ting</firstname><surname>Lin</surname><order>1</order></author><author><firstname>Jonathan</firstname><surname>Ngiam</surname><order>2</order></author><author><firstname>Bob</firstname><surname>Xu</surname><order>3</order></author><author><firstname>Yu-Han</firstname><surname>Chang</surname><order>4</order></author><author><firstname>Tian</firstname><surname>Du</surname><order>5</order></author><author><firstname>Thomas J.</firstname><surname>Macdonald</surname><order>6</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>7</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>8</order></author></authors><documents><document><filename>54286__20958__342f2e90d440463bb5c8c9e865d5b6c2.pdf</filename><originalFilename>54286.VOR.pdf</originalFilename><uploaded>2021-09-21T15:48:34.1129929</uploaded><type>Output</type><contentLength>822456</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Distributed under the terms of a Creative Commons Attribution CC-BY Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-09-21T15:50:43.4349642 v2 54286 2020-05-20 Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-05-20 MTLS We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation. Journal Article Journal of Materials Chemistry A 8 17 8684 8691 Royal Society of Chemistry (RSC) 2050-7488 2050-7496 14 4 2020 2020-04-14 10.1039/d0ta01606c https://spiral.imperial.ac.uk/handle/10044/1/78013 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2021-09-21T15:50:43.4349642 2020-05-20T09:39:46.2862570 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Chieh-Ting Lin 1 Jonathan Ngiam 2 Bob Xu 3 Yu-Han Chang 4 Tian Du 5 Thomas J. Macdonald 6 James Durrant 0000-0001-8353-7345 7 Martyn A. McLachlan 8 54286__20958__342f2e90d440463bb5c8c9e865d5b6c2.pdf 54286.VOR.pdf 2021-09-21T15:48:34.1129929 Output 822456 application/pdf Version of Record true Distributed under the terms of a Creative Commons Attribution CC-BY Licence. true eng https://creativecommons.org/licenses/by/3.0/
title Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
spellingShingle Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
James Durrant
title_short Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
title_full Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
title_fullStr Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
title_full_unstemmed Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
title_sort Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation
author_id_str_mv f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author James Durrant
author2 Chieh-Ting Lin
Jonathan Ngiam
Bob Xu
Yu-Han Chang
Tian Du
Thomas J. Macdonald
James Durrant
Martyn A. McLachlan
format Journal article
container_title Journal of Materials Chemistry A
container_volume 8
container_issue 17
container_start_page 8684
publishDate 2020
institution Swansea University
issn 2050-7488
2050-7496
doi_str_mv 10.1039/d0ta01606c
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
url https://spiral.imperial.ac.uk/handle/10044/1/78013
document_store_str 1
active_str 0
description We identify a facile strategy that significantly reduces electrode corrosion and device degradation in unencapsulated perovskite solar cells (PSCs) operating in ambient air. By employing Cu–Ag bilayer top electrode PSCs, we show enhanced operational lifetime compared with devices prepared from single metal (Al, Ag and Cu) analogues. Time-of-flight secondary ion mass spectrometry depth profiles indicate that the insertion of the thin layer of Cu (10 nm) below the Ag (100 nm) electrode significantly reduces diffusion of species originating in the perovskite active layer into the electron transport layer and electrode. X-ray diffraction (XRD) analysis reveals the mutually beneficial relationship between the bilayer metals, whereby the thermally evaporated Ag inhibits Cu oxidation and the Cu prevents interfacial reactions between the perovskite and Ag. The results here not only demonstrate a simple approach to prevent the electrode and device degradation that enhance lifetime and stability but also provide insight into ageing related ion migration and structural reorganisation.
published_date 2020-04-14T04:07:43Z
_version_ 1763753552983883776
score 11.013731