No Cover Image

Journal article 654 views 105 downloads

Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses

Matyas Daboczi, Jinhyun Kim, Jinho Lee, Hongkyu Kang, Iain Hamilton, Chieh‐Ting Lin, Stoichko Dimitrov Orcid Logo, Martyn A. McLachlan, Kwanghee Lee, James Durrant Orcid Logo, Ji‐Seon Kim

Advanced Functional Materials, Start page: 2001482

Swansea University Authors: Stoichko Dimitrov Orcid Logo, James Durrant Orcid Logo

  • 54163.pdf

    PDF | Version of Record

    Released under the terms of the Creative Commons Attribution License (CC-BY).

    Download (1.31MB)

Check full text

DOI (Published version): 10.1002/adfm.202001482

Abstract

Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar...

Full description

Published in: Advanced Functional Materials
ISSN: 1616-301X 1616-3028
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54163
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-05-07T13:33:59Z
last_indexed 2020-06-10T19:07:57Z
id cronfa54163
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-06-10T16:04:56.3065434</datestamp><bib-version>v2</bib-version><id>54163</id><entry>2020-05-07</entry><title>Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses</title><swanseaauthors><author><sid>9fc26ec1b8655cd0d66f7196a924fe14</sid><ORCID>0000-0002-1564-7080</ORCID><firstname>Stoichko</firstname><surname>Dimitrov</surname><name>Stoichko Dimitrov</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-05-07</date><deptcode>EEN</deptcode><abstract>Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one&#x2010;step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short&#x2010;circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite&#x2010;only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (&#x2248;250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high&#x2010;performance devices.</abstract><type>Journal Article</type><journal>Advanced Functional Materials</journal><paginationStart>2001482</paginationStart><publisher>Wiley</publisher><issnPrint>1616-301X</issnPrint><issnElectronic>1616-3028</issnElectronic><keywords/><publishedDay>29</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-29</publishedDate><doi>10.1002/adfm.202001482</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-10T16:04:56.3065434</lastEdited><Created>2020-05-07T10:42:56.5717329</Created><authors><author><firstname>Matyas</firstname><surname>Daboczi</surname><order>1</order></author><author><firstname>Jinhyun</firstname><surname>Kim</surname><order>2</order></author><author><firstname>Jinho</firstname><surname>Lee</surname><order>3</order></author><author><firstname>Hongkyu</firstname><surname>Kang</surname><order>4</order></author><author><firstname>Iain</firstname><surname>Hamilton</surname><order>5</order></author><author><firstname>Chieh&#x2010;Ting</firstname><surname>Lin</surname><order>6</order></author><author><firstname>Stoichko</firstname><surname>Dimitrov</surname><orcid>0000-0002-1564-7080</orcid><order>7</order></author><author><firstname>Martyn A.</firstname><surname>McLachlan</surname><order>8</order></author><author><firstname>Kwanghee</firstname><surname>Lee</surname><order>9</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>10</order></author><author><firstname>Ji&#x2010;Seon</firstname><surname>Kim</surname><order>11</order></author></authors><documents><document><filename>54163__17202__da1f9dcb64c347b597bd410f0b25d570.pdf</filename><originalFilename>54163.pdf</originalFilename><uploaded>2020-05-07T10:46:05.6555170</uploaded><type>Output</type><contentLength>1372109</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of the Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2020-06-10T16:04:56.3065434 v2 54163 2020-05-07 Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses 9fc26ec1b8655cd0d66f7196a924fe14 0000-0002-1564-7080 Stoichko Dimitrov Stoichko Dimitrov true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2020-05-07 EEN Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices. Journal Article Advanced Functional Materials 2001482 Wiley 1616-301X 1616-3028 29 4 2020 2020-04-29 10.1002/adfm.202001482 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-06-10T16:04:56.3065434 2020-05-07T10:42:56.5717329 Matyas Daboczi 1 Jinhyun Kim 2 Jinho Lee 3 Hongkyu Kang 4 Iain Hamilton 5 Chieh‐Ting Lin 6 Stoichko Dimitrov 0000-0002-1564-7080 7 Martyn A. McLachlan 8 Kwanghee Lee 9 James Durrant 0000-0001-8353-7345 10 Ji‐Seon Kim 11 54163__17202__da1f9dcb64c347b597bd410f0b25d570.pdf 54163.pdf 2020-05-07T10:46:05.6555170 Output 1372109 application/pdf Version of Record true Released under the terms of the Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
spellingShingle Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
Stoichko Dimitrov
James Durrant
title_short Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
title_full Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
title_fullStr Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
title_full_unstemmed Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
title_sort Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses
author_id_str_mv 9fc26ec1b8655cd0d66f7196a924fe14
f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv 9fc26ec1b8655cd0d66f7196a924fe14_***_Stoichko Dimitrov
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author Stoichko Dimitrov
James Durrant
author2 Matyas Daboczi
Jinhyun Kim
Jinho Lee
Hongkyu Kang
Iain Hamilton
Chieh‐Ting Lin
Stoichko Dimitrov
Martyn A. McLachlan
Kwanghee Lee
James Durrant
Ji‐Seon Kim
format Journal article
container_title Advanced Functional Materials
container_start_page 2001482
publishDate 2020
institution Swansea University
issn 1616-301X
1616-3028
doi_str_mv 10.1002/adfm.202001482
publisher Wiley
document_store_str 1
active_str 0
description Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices.
published_date 2020-04-29T04:07:31Z
_version_ 1763753539509682176
score 11.013731