No Cover Image

Journal article 962 views 288 downloads

Laser Doppler electrophoresis and electro-osmotic flow mapping for the zeta potential measurement of positively charged membrane surfaces

Matthew Walters, SAIF AL AANI, Peter Esteban Orcid Logo, Paul Williams Orcid Logo, Darren Oatley-Radcliffe Orcid Logo

Chemical Engineering Research and Design, Volume: 159, Pages: 468 - 476

Swansea University Authors: SAIF AL AANI, Peter Esteban Orcid Logo, Paul Williams Orcid Logo, Darren Oatley-Radcliffe Orcid Logo

  • 54159.pdf

    PDF | Accepted Manuscript

    © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

    Download (1.77MB)

Abstract

Successful characterization of membranes is of paramount importance for the development and improvement of novel membranes and membrane processes. The characterisation of membrane charge is key to understanding charge interactions between the process stream and the membrane and is typically represen...

Full description

Published in: Chemical Engineering Research and Design
ISSN: 0263-8762
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54159
Abstract: Successful characterization of membranes is of paramount importance for the development and improvement of novel membranes and membrane processes. The characterisation of membrane charge is key to understanding charge interactions between the process stream and the membrane and is typically represented by the surface zeta potential. In a previous paper (Thomas et al., 2017), a novel technique employing an Uzigirs dip cell arrangement used in conjunction with Laser Doppler Electrophoresis was used to characterize the surface of several negatively charged membranes. In this paper, positively charged modified PTFE membranes are fabricated and the novel zeta potential measurement technique is utilised to quantify the resultant membrane charge by use of a positively charged amidine tracer particle. The amidine particles were characterised and shown to have a positive zeta potential of 12.4 mV for the experimental conditions used. A comparative analysis was made between the novel laser Doppler electrophoresis measurements and tangential streaming potential measurements for the positive membrane and the agreement was good. The phase plot and mobility-displacement were of good quality for the data set, with the surface equivalent mobility being 0.632 μmcm/Vs with R2 = 0.977. In addition, a series of experiments were conducted to explore the operating envelope and highlight the pitfalls of the technique, i.e. oppositely charged particles to the surface should not be used. Overall, this work expands the application of the novel zeta potential measurement technique to span all membrane charge types. Thus providing a real benefit to the practicing scientist or engineer by having a reliable, fast and simple zeta potential technique that uses only a very small membrane sample.
Keywords: Membrane, Charge, Zeta potential, Positive, Electrophoresis
Start Page: 468
End Page: 476