No Cover Image

Journal article 665 views 155 downloads

Sliding Mode Control With PID Sliding Surface for Active Vibration Damping of Pneumatically Actuated Soft Robots

Ameer Hamza Khan, Shuai Li Orcid Logo

IEEE Access, Volume: 8, Pages: 88793 - 88800

Swansea University Author: Shuai Li Orcid Logo

  • 54131.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution 4.0 License (CC-BY).

    Download (1.55MB)

Abstract

This paper proposes a novel active vibration damping mechanism for soft robots. In recent years, soft robots have gained increasing research attention for robotic researchers and industrial developers alike. Soft robots offer a significant number of advantages when it comes to the handling of fragil...

Full description

Published in: IEEE Access
ISSN: 2169-3536
Published: Institute of Electrical and Electronics Engineers (IEEE) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54131
Abstract: This paper proposes a novel active vibration damping mechanism for soft robots. In recent years, soft robots have gained increasing research attention for robotic researchers and industrial developers alike. Soft robots offer a significant number of advantages when it comes to the handling of fragile objects, clinical rehabilitation tasks, and human-machine interaction. Soft robots demonstrate a high degree of compliance and safety because of their inherent softness, achieving the same with rigid robots will require intricate controller design and sensing mechanisms. However, the most commonly used soft robots use pneumatic systems for actuation. These pneumatic soft robots undergo large amplitude vibrations when deactuated suddenly. These vibrations not only decrease the accuracy of these soft robots but also compromise their structural integrity, which results in a decrease in their useable lifespan. An active vibration damping mechanism is very much needed to increase the utility of soft robots in industrial applications. To accurately control the dynamic behavior of soft robots, we propose a sliding mode based controller with PID sliding surface. The proposed controller uses feedback error to define a PID sliding surface, and a nonlinear sliding mode controller works to keep the system attached to the sliding surface. The coefficients of the PID sliding surface determine the dynamic behavior of the soft robot. The performance of the proposed controller is verified by using a multi-chambered parallel soft robot. The experimental results demonstrate that the proposed controller can suppress vibration amplitude to a decidedly smaller range.
College: Faculty of Science and Engineering
Start Page: 88793
End Page: 88800