Conference Paper/Proceeding/Abstract 1609 views
A Characterisation of Definable NP Search Problems in Peano Arithmetic
Logic, Language, Information and Computation, Volume: 5514, Pages: 1 - 12
Swansea University Author:
Arnold Beckmann
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/978-3-642-02261-6_1
Abstract
The complexity class of $\prec$-bounded local search problems with goals is introduced for well-orderings $\prec$, and is used to give a characterisation of definable NP search problems in Peano Arithmetic.
| Published in: | Logic, Language, Information and Computation |
|---|---|
| ISSN: | 0302-9743 1611-3349 |
| Published: |
Springer
2009
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa54 |
| first_indexed |
2013-07-23T11:49:24Z |
|---|---|
| last_indexed |
2018-02-09T04:27:22Z |
| id |
cronfa54 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2013-10-17T11:44:34.9082771</datestamp><bib-version>v2</bib-version><id>54</id><entry>2012-02-23</entry><title>A Characterisation of Definable NP Search Problems in Peano Arithmetic</title><swanseaauthors><author><sid>1439ebd690110a50a797b7ec78cca600</sid><ORCID>0000-0001-7958-5790</ORCID><firstname>Arnold</firstname><surname>Beckmann</surname><name>Arnold Beckmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-23</date><deptcode>MACS</deptcode><abstract>The complexity class of $\prec$-bounded local search problems with goals is introduced for well-orderings $\prec$, and is used to give a characterisation of definable NP search problems in Peano Arithmetic.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Logic, Language, Information and Computation</journal><volume>5514</volume><journalNumber></journalNumber><paginationStart>1</paginationStart><paginationEnd>12</paginationEnd><publisher>Springer</publisher><placeOfPublication/><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-06-01</publishedDate><doi>10.1007/978-3-642-02261-6_1</doi><url/><notes>In Logic, Language, Information and Computation, 16th International Workshop, WoLLIC 2009, Proceedings, Tokyo, Japan</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-10-17T11:44:34.9082771</lastEdited><Created>2012-02-23T17:02:01.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Arnold</firstname><surname>Beckmann</surname><orcid>0000-0001-7958-5790</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2013-10-17T11:44:34.9082771 v2 54 2012-02-23 A Characterisation of Definable NP Search Problems in Peano Arithmetic 1439ebd690110a50a797b7ec78cca600 0000-0001-7958-5790 Arnold Beckmann Arnold Beckmann true false 2012-02-23 MACS The complexity class of $\prec$-bounded local search problems with goals is introduced for well-orderings $\prec$, and is used to give a characterisation of definable NP search problems in Peano Arithmetic. Conference Paper/Proceeding/Abstract Logic, Language, Information and Computation 5514 1 12 Springer 0302-9743 1611-3349 1 6 2009 2009-06-01 10.1007/978-3-642-02261-6_1 In Logic, Language, Information and Computation, 16th International Workshop, WoLLIC 2009, Proceedings, Tokyo, Japan COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2013-10-17T11:44:34.9082771 2012-02-23T17:02:01.0000000 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Arnold Beckmann 0000-0001-7958-5790 1 |
| title |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| spellingShingle |
A Characterisation of Definable NP Search Problems in Peano Arithmetic Arnold Beckmann |
| title_short |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| title_full |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| title_fullStr |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| title_full_unstemmed |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| title_sort |
A Characterisation of Definable NP Search Problems in Peano Arithmetic |
| author_id_str_mv |
1439ebd690110a50a797b7ec78cca600 |
| author_id_fullname_str_mv |
1439ebd690110a50a797b7ec78cca600_***_Arnold Beckmann |
| author |
Arnold Beckmann |
| author2 |
Arnold Beckmann |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
Logic, Language, Information and Computation |
| container_volume |
5514 |
| container_start_page |
1 |
| publishDate |
2009 |
| institution |
Swansea University |
| issn |
0302-9743 1611-3349 |
| doi_str_mv |
10.1007/978-3-642-02261-6_1 |
| publisher |
Springer |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
0 |
| active_str |
0 |
| description |
The complexity class of $\prec$-bounded local search problems with goals is introduced for well-orderings $\prec$, and is used to give a characterisation of definable NP search problems in Peano Arithmetic. |
| published_date |
2009-06-01T04:29:42Z |
| _version_ |
1851275380103577600 |
| score |
11.090362 |

