Journal article 932 views 553 downloads
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes
Daniel Nagy,
Gabriel Espineira,
Guillermo Indalecio,
Antonio J. Garcia-Loureiro,
Karol Kalna ,
Natalia Seoane
IEEE Access, Volume: 8, Pages: 53196 - 53202
Swansea University Author: Karol Kalna
-
PDF | Version of Record
This work is licensed under a Creative Commons Attribution 4.0 License.
Download (2.2MB)
DOI (Published version): 10.1109/access.2020.2980925
Abstract
Nanosheet (NS) and nanowire (NW) FET architectures scaled to a gate length ( LG ) of 16 nm and below are benchmarked against equivalent FinFETs. The device performance is predicted using a 3D finite element drift-diffusion/Monte Carlo simulation toolbox with integrated 2D Schrödinger equation based...
Published in: | IEEE Access |
---|---|
ISSN: | 2169-3536 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53939 |
first_indexed |
2020-04-14T13:46:33Z |
---|---|
last_indexed |
2021-08-07T03:10:42Z |
id |
cronfa53939 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-08-06T10:06:35.7047709</datestamp><bib-version>v2</bib-version><id>53939</id><entry>2020-04-14</entry><title>Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-04-14</date><deptcode>ACEM</deptcode><abstract>Nanosheet (NS) and nanowire (NW) FET architectures scaled to a gate length ( LG ) of 16 nm and below are benchmarked against equivalent FinFETs. The device performance is predicted using a 3D finite element drift-diffusion/Monte Carlo simulation toolbox with integrated 2D Schrödinger equation based quantum corrections. The NS FET is a viable replacement for the FinFET in high performance (HP) applications when scaled down to LG of 16 nm offering a larger on-current ( ION ) and slightly better sub-threshold characteristics. Below LG of 16 nm, the NW FET becomes the most promising architecture offering an almost ideal sub-threshold swing, the smallest off-current ( IOFF ), and the largest ION/IOFF ratio out of the three architectures. However, the NW FET suffers from early ION saturation with the increasing gate bias that can be tackled by minimizing interface roughness and/or by optimisation of a doping profile in the device body.</abstract><type>Journal Article</type><journal>IEEE Access</journal><volume>8</volume><journalNumber/><paginationStart>53196</paginationStart><paginationEnd>53202</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2169-3536</issnElectronic><keywords/><publishedDay>26</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-03-26</publishedDate><doi>10.1109/access.2020.2980925</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>University of Santiago De Compostela</funders><lastEdited>2021-08-06T10:06:35.7047709</lastEdited><Created>2020-04-14T08:24:03.5458831</Created><path><level id="1">Professional Services</level><level id="2">ISS - Uncategorised</level></path><authors><author><firstname>Daniel</firstname><surname>Nagy</surname><order>1</order></author><author><firstname>Gabriel</firstname><surname>Espineira</surname><order>2</order></author><author><firstname>Guillermo</firstname><surname>Indalecio</surname><order>3</order></author><author><firstname>Antonio J.</firstname><surname>Garcia-Loureiro</surname><order>4</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>5</order></author><author><firstname>Natalia</firstname><surname>Seoane</surname><order>6</order></author></authors><documents><document><filename>53939__17053__639075c9775a4e0098bed8791269586c.pdf</filename><originalFilename>53939.pdf</originalFilename><uploaded>2020-04-14T08:27:21.1024337</uploaded><type>Output</type><contentLength>2303073</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This work is licensed under a Creative Commons Attribution 4.0 License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-08-06T10:06:35.7047709 v2 53939 2020-04-14 Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2020-04-14 ACEM Nanosheet (NS) and nanowire (NW) FET architectures scaled to a gate length ( LG ) of 16 nm and below are benchmarked against equivalent FinFETs. The device performance is predicted using a 3D finite element drift-diffusion/Monte Carlo simulation toolbox with integrated 2D Schrödinger equation based quantum corrections. The NS FET is a viable replacement for the FinFET in high performance (HP) applications when scaled down to LG of 16 nm offering a larger on-current ( ION ) and slightly better sub-threshold characteristics. Below LG of 16 nm, the NW FET becomes the most promising architecture offering an almost ideal sub-threshold swing, the smallest off-current ( IOFF ), and the largest ION/IOFF ratio out of the three architectures. However, the NW FET suffers from early ION saturation with the increasing gate bias that can be tackled by minimizing interface roughness and/or by optimisation of a doping profile in the device body. Journal Article IEEE Access 8 53196 53202 Institute of Electrical and Electronics Engineers (IEEE) 2169-3536 26 3 2020 2020-03-26 10.1109/access.2020.2980925 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Another institution paid the OA fee University of Santiago De Compostela 2021-08-06T10:06:35.7047709 2020-04-14T08:24:03.5458831 Professional Services ISS - Uncategorised Daniel Nagy 1 Gabriel Espineira 2 Guillermo Indalecio 3 Antonio J. Garcia-Loureiro 4 Karol Kalna 0000-0002-6333-9189 5 Natalia Seoane 6 53939__17053__639075c9775a4e0098bed8791269586c.pdf 53939.pdf 2020-04-14T08:27:21.1024337 Output 2303073 application/pdf Version of Record true This work is licensed under a Creative Commons Attribution 4.0 License. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
spellingShingle |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes Karol Kalna |
title_short |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
title_full |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
title_fullStr |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
title_full_unstemmed |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
title_sort |
Benchmarking of FinFET, Nanosheet, and Nanowire FET Architectures for Future Technology Nodes |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
Daniel Nagy Gabriel Espineira Guillermo Indalecio Antonio J. Garcia-Loureiro Karol Kalna Natalia Seoane |
format |
Journal article |
container_title |
IEEE Access |
container_volume |
8 |
container_start_page |
53196 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2169-3536 |
doi_str_mv |
10.1109/access.2020.2980925 |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
college_str |
Professional Services |
hierarchytype |
|
hierarchy_top_id |
professionalservices |
hierarchy_top_title |
Professional Services |
hierarchy_parent_id |
professionalservices |
hierarchy_parent_title |
Professional Services |
department_str |
ISS - Uncategorised{{{_:::_}}}Professional Services{{{_:::_}}}ISS - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Nanosheet (NS) and nanowire (NW) FET architectures scaled to a gate length ( LG ) of 16 nm and below are benchmarked against equivalent FinFETs. The device performance is predicted using a 3D finite element drift-diffusion/Monte Carlo simulation toolbox with integrated 2D Schrödinger equation based quantum corrections. The NS FET is a viable replacement for the FinFET in high performance (HP) applications when scaled down to LG of 16 nm offering a larger on-current ( ION ) and slightly better sub-threshold characteristics. Below LG of 16 nm, the NW FET becomes the most promising architecture offering an almost ideal sub-threshold swing, the smallest off-current ( IOFF ), and the largest ION/IOFF ratio out of the three architectures. However, the NW FET suffers from early ION saturation with the increasing gate bias that can be tackled by minimizing interface roughness and/or by optimisation of a doping profile in the device body. |
published_date |
2020-03-26T04:56:49Z |
_version_ |
1821380086665838592 |
score |
11.3749895 |