Journal article 612 views 978 downloads
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach
Neurocomputing, Volume: 400, Pages: 272 - 284
Swansea University Author: Shuai Li
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (11.37MB)
DOI (Published version): 10.1016/j.neucom.2020.02.109
Abstract
In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation...
Published in: | Neurocomputing |
---|---|
ISSN: | 0925-2312 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53900 |
first_indexed |
2020-04-06T20:01:41Z |
---|---|
last_indexed |
2023-03-18T04:07:40Z |
id |
cronfa53900 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-03-17T11:28:40.0248949</datestamp><bib-version>v2</bib-version><id>53900</id><entry>2020-04-06</entry><title>Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach</title><swanseaauthors><author><sid>42ff9eed09bcd109fbbe484a0f99a8a8</sid><ORCID>0000-0001-8316-5289</ORCID><firstname>Shuai</firstname><surname>Li</surname><name>Shuai Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-04-06</date><deptcode>ACEM</deptcode><abstract>In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented.</abstract><type>Journal Article</type><journal>Neurocomputing</journal><volume>400</volume><journalNumber/><paginationStart>272</paginationStart><paginationEnd>284</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0925-2312</issnPrint><issnElectronic/><keywords>Mobile-manipulator, Tracking control, Metaheuristic optimization, Recurrent neural network, Nature-inspired algorithm, Redundancy resolution</keywords><publishedDay>4</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-08-04</publishedDate><doi>10.1016/j.neucom.2020.02.109</doi><url>http://dx.doi.org/10.1016/j.neucom.2020.02.109</url><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-03-17T11:28:40.0248949</lastEdited><Created>2020-04-06T09:35:35.2884631</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Ameer Hamza</firstname><surname>Khan</surname><orcid>0000-0002-5367-5277</orcid><order>1</order></author><author><firstname>Shuai</firstname><surname>Li</surname><orcid>0000-0001-8316-5289</orcid><order>2</order></author><author><firstname>Dechao</firstname><surname>Chen</surname><orcid>0000-0002-5171-1414</orcid><order>3</order></author><author><firstname>Liefa</firstname><surname>Liao</surname><order>4</order></author></authors><documents><document><filename>53900__17084__19d82817f881499c8643a6d7c46cd5fb.pdf</filename><originalFilename>53900.pdf</originalFilename><uploaded>2020-04-17T13:04:25.6587995</uploaded><type>Output</type><contentLength>11926143</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-03-12T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-03-17T11:28:40.0248949 v2 53900 2020-04-06 Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach 42ff9eed09bcd109fbbe484a0f99a8a8 0000-0001-8316-5289 Shuai Li Shuai Li true false 2020-04-06 ACEM In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented. Journal Article Neurocomputing 400 272 284 Elsevier BV 0925-2312 Mobile-manipulator, Tracking control, Metaheuristic optimization, Recurrent neural network, Nature-inspired algorithm, Redundancy resolution 4 8 2020 2020-08-04 10.1016/j.neucom.2020.02.109 http://dx.doi.org/10.1016/j.neucom.2020.02.109 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2023-03-17T11:28:40.0248949 2020-04-06T09:35:35.2884631 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Ameer Hamza Khan 0000-0002-5367-5277 1 Shuai Li 0000-0001-8316-5289 2 Dechao Chen 0000-0002-5171-1414 3 Liefa Liao 4 53900__17084__19d82817f881499c8643a6d7c46cd5fb.pdf 53900.pdf 2020-04-17T13:04:25.6587995 Output 11926143 application/pdf Version of Record true 2021-03-12T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
title |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
spellingShingle |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach Shuai Li |
title_short |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
title_full |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
title_fullStr |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
title_full_unstemmed |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
title_sort |
Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach |
author_id_str_mv |
42ff9eed09bcd109fbbe484a0f99a8a8 |
author_id_fullname_str_mv |
42ff9eed09bcd109fbbe484a0f99a8a8_***_Shuai Li |
author |
Shuai Li |
author2 |
Ameer Hamza Khan Shuai Li Dechao Chen Liefa Liao |
format |
Journal article |
container_title |
Neurocomputing |
container_volume |
400 |
container_start_page |
272 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0925-2312 |
doi_str_mv |
10.1016/j.neucom.2020.02.109 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
url |
http://dx.doi.org/10.1016/j.neucom.2020.02.109 |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented. |
published_date |
2020-08-04T04:56:43Z |
_version_ |
1821380080678469632 |
score |
11.04748 |