No Cover Image

Journal article 964 views 289 downloads

A viscoelastic – viscoplastic material model for superalloy applications

J.P. Rouse, B. Engel, C.J. Hyde, S.J. Pattison, Mark Whittaker Orcid Logo, Paul Jones, Ben Cockings, Nick Barnard

International Journal of Fatigue, Volume: 136, Start page: 105579

Swansea University Authors: Mark Whittaker Orcid Logo, Paul Jones, Ben Cockings, Nick Barnard

  • 53862.pdf

    PDF | Accepted Manuscript

    © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.

    Download (997.12KB)

Abstract

An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is...

Full description

Published in: International Journal of Fatigue
ISSN: 0142-1123
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53862
first_indexed 2020-03-25T13:30:48Z
last_indexed 2021-03-16T04:17:03Z
id cronfa53862
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-03-15T12:50:15.8867782</datestamp><bib-version>v2</bib-version><id>53862</id><entry>2020-03-25</entry><title>A viscoelastic &#x2013; viscoplastic material model for superalloy applications</title><swanseaauthors><author><sid>a146c6d442cb2c466d096179f9ac97ca</sid><ORCID>0000-0002-5854-0726</ORCID><firstname>Mark</firstname><surname>Whittaker</surname><name>Mark Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e010541556fca2420f17b3e58860108</sid><ORCID/><firstname>Paul</firstname><surname>Jones</surname><name>Paul Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>998ffd9fa65fa0c2ffc718a5bff10cdd</sid><ORCID/><firstname>Ben</firstname><surname>Cockings</surname><name>Ben Cockings</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dc4a58e614bc6a1d99812a3acfdd9034</sid><ORCID/><firstname>Nick</firstname><surname>Barnard</surname><name>Nick Barnard</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-03-25</date><deptcode>EAAS</deptcode><abstract>An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic &#x2013; viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.</abstract><type>Journal Article</type><journal>International Journal of Fatigue</journal><volume>136</volume><journalNumber/><paginationStart>105579</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0142-1123</issnPrint><issnElectronic/><keywords>Viscoelasticity, Viscoplasticity, Stress relaxation, RR1000, Superalloy</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-07-01</publishedDate><doi>10.1016/j.ijfatigue.2020.105579</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-03-15T12:50:15.8867782</lastEdited><Created>2020-03-25T11:20:45.6210189</Created><path><level id="1">Professional Services</level><level id="2">ISS - Uncategorised</level></path><authors><author><firstname>J.P.</firstname><surname>Rouse</surname><order>1</order></author><author><firstname>B.</firstname><surname>Engel</surname><order>2</order></author><author><firstname>C.J.</firstname><surname>Hyde</surname><order>3</order></author><author><firstname>S.J.</firstname><surname>Pattison</surname><order>4</order></author><author><firstname>Mark</firstname><surname>Whittaker</surname><orcid>0000-0002-5854-0726</orcid><order>5</order></author><author><firstname>Paul</firstname><surname>Jones</surname><orcid/><order>6</order></author><author><firstname>Ben</firstname><surname>Cockings</surname><orcid/><order>7</order></author><author><firstname>Nick</firstname><surname>Barnard</surname><orcid/><order>8</order></author></authors><documents><document><filename>53862__16976__b7f78df2b2994602b98c8ca7bd08126d.pdf</filename><originalFilename>53862.pdf</originalFilename><uploaded>2020-03-30T15:28:54.5264436</uploaded><type>Output</type><contentLength>1021048</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-03-11T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-03-15T12:50:15.8867782 v2 53862 2020-03-25 A viscoelastic – viscoplastic material model for superalloy applications a146c6d442cb2c466d096179f9ac97ca 0000-0002-5854-0726 Mark Whittaker Mark Whittaker true false 7e010541556fca2420f17b3e58860108 Paul Jones Paul Jones true false 998ffd9fa65fa0c2ffc718a5bff10cdd Ben Cockings Ben Cockings true false dc4a58e614bc6a1d99812a3acfdd9034 Nick Barnard Nick Barnard true false 2020-03-25 EAAS An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data. Journal Article International Journal of Fatigue 136 105579 Elsevier BV 0142-1123 Viscoelasticity, Viscoplasticity, Stress relaxation, RR1000, Superalloy 1 7 2020 2020-07-01 10.1016/j.ijfatigue.2020.105579 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-03-15T12:50:15.8867782 2020-03-25T11:20:45.6210189 Professional Services ISS - Uncategorised J.P. Rouse 1 B. Engel 2 C.J. Hyde 3 S.J. Pattison 4 Mark Whittaker 0000-0002-5854-0726 5 Paul Jones 6 Ben Cockings 7 Nick Barnard 8 53862__16976__b7f78df2b2994602b98c8ca7bd08126d.pdf 53862.pdf 2020-03-30T15:28:54.5264436 Output 1021048 application/pdf Accepted Manuscript true 2021-03-11T00:00:00.0000000 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. true eng http://creativecommons.org/licenses/by-nc-nd/4.0/
title A viscoelastic – viscoplastic material model for superalloy applications
spellingShingle A viscoelastic – viscoplastic material model for superalloy applications
Mark Whittaker
Paul Jones
Ben Cockings
Nick Barnard
title_short A viscoelastic – viscoplastic material model for superalloy applications
title_full A viscoelastic – viscoplastic material model for superalloy applications
title_fullStr A viscoelastic – viscoplastic material model for superalloy applications
title_full_unstemmed A viscoelastic – viscoplastic material model for superalloy applications
title_sort A viscoelastic – viscoplastic material model for superalloy applications
author_id_str_mv a146c6d442cb2c466d096179f9ac97ca
7e010541556fca2420f17b3e58860108
998ffd9fa65fa0c2ffc718a5bff10cdd
dc4a58e614bc6a1d99812a3acfdd9034
author_id_fullname_str_mv a146c6d442cb2c466d096179f9ac97ca_***_Mark Whittaker
7e010541556fca2420f17b3e58860108_***_Paul Jones
998ffd9fa65fa0c2ffc718a5bff10cdd_***_Ben Cockings
dc4a58e614bc6a1d99812a3acfdd9034_***_Nick Barnard
author Mark Whittaker
Paul Jones
Ben Cockings
Nick Barnard
author2 J.P. Rouse
B. Engel
C.J. Hyde
S.J. Pattison
Mark Whittaker
Paul Jones
Ben Cockings
Nick Barnard
format Journal article
container_title International Journal of Fatigue
container_volume 136
container_start_page 105579
publishDate 2020
institution Swansea University
issn 0142-1123
doi_str_mv 10.1016/j.ijfatigue.2020.105579
publisher Elsevier BV
college_str Professional Services
hierarchytype
hierarchy_top_id professionalservices
hierarchy_top_title Professional Services
hierarchy_parent_id professionalservices
hierarchy_parent_title Professional Services
department_str ISS - Uncategorised{{{_:::_}}}Professional Services{{{_:::_}}}ISS - Uncategorised
document_store_str 1
active_str 0
description An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.
published_date 2020-07-01T20:03:53Z
_version_ 1821437155200729088
score 11.047609