Journal article 1055 views 305 downloads
A viscoelastic – viscoplastic material model for superalloy applications
International Journal of Fatigue, Volume: 136, Start page: 105579
Swansea University Authors:
Mark Whittaker , Paul Jones, Ben Cockings, Nick Barnard
-
PDF | Accepted Manuscript
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Download (997.12KB)
DOI (Published version): 10.1016/j.ijfatigue.2020.105579
Abstract
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is...
Published in: | International Journal of Fatigue |
---|---|
ISSN: | 0142-1123 1879-3452 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53862 |
first_indexed |
2020-03-25T13:30:48Z |
---|---|
last_indexed |
2025-03-27T06:40:22Z |
id |
cronfa53862 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-03-26T15:46:09.6541713</datestamp><bib-version>v2</bib-version><id>53862</id><entry>2020-03-25</entry><title>A viscoelastic – viscoplastic material model for superalloy applications</title><swanseaauthors><author><sid>a146c6d442cb2c466d096179f9ac97ca</sid><ORCID>0000-0002-5854-0726</ORCID><firstname>Mark</firstname><surname>Whittaker</surname><name>Mark Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e010541556fca2420f17b3e58860108</sid><ORCID/><firstname>Paul</firstname><surname>Jones</surname><name>Paul Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>998ffd9fa65fa0c2ffc718a5bff10cdd</sid><ORCID/><firstname>Ben</firstname><surname>Cockings</surname><name>Ben Cockings</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dc4a58e614bc6a1d99812a3acfdd9034</sid><ORCID/><firstname>Nick</firstname><surname>Barnard</surname><name>Nick Barnard</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-03-25</date><deptcode>EAAS</deptcode><abstract>An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data.</abstract><type>Journal Article</type><journal>International Journal of Fatigue</journal><volume>136</volume><journalNumber/><paginationStart>105579</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0142-1123</issnPrint><issnElectronic>1879-3452</issnElectronic><keywords>Viscoelasticity, Viscoplasticity, Stress relaxation, RR1000, Superalloy</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-07-01</publishedDate><doi>10.1016/j.ijfatigue.2020.105579</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This project has received funding from the European Union’s Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No. 686600.</funders><projectreference/><lastEdited>2025-03-26T15:46:09.6541713</lastEdited><Created>2020-03-25T11:20:45.6210189</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>J.P.</firstname><surname>Rouse</surname><order>1</order></author><author><firstname>B.</firstname><surname>Engel</surname><order>2</order></author><author><firstname>C.J.</firstname><surname>Hyde</surname><order>3</order></author><author><firstname>S.J.</firstname><surname>Pattison</surname><order>4</order></author><author><firstname>Mark</firstname><surname>Whittaker</surname><orcid>0000-0002-5854-0726</orcid><order>5</order></author><author><firstname>Paul</firstname><surname>Jones</surname><orcid/><order>6</order></author><author><firstname>Ben</firstname><surname>Cockings</surname><orcid/><order>7</order></author><author><firstname>Nick</firstname><surname>Barnard</surname><orcid/><order>8</order></author></authors><documents><document><filename>53862__16976__b7f78df2b2994602b98c8ca7bd08126d.pdf</filename><originalFilename>53862.pdf</originalFilename><uploaded>2020-03-30T15:28:54.5264436</uploaded><type>Output</type><contentLength>1021048</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-03-11T00:00:00.0000000</embargoDate><documentNotes>© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-03-26T15:46:09.6541713 v2 53862 2020-03-25 A viscoelastic – viscoplastic material model for superalloy applications a146c6d442cb2c466d096179f9ac97ca 0000-0002-5854-0726 Mark Whittaker Mark Whittaker true false 7e010541556fca2420f17b3e58860108 Paul Jones Paul Jones true false 998ffd9fa65fa0c2ffc718a5bff10cdd Ben Cockings Ben Cockings true false dc4a58e614bc6a1d99812a3acfdd9034 Nick Barnard Nick Barnard true false 2020-03-25 EAAS An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data. Journal Article International Journal of Fatigue 136 105579 Elsevier BV 0142-1123 1879-3452 Viscoelasticity, Viscoplasticity, Stress relaxation, RR1000, Superalloy 1 7 2020 2020-07-01 10.1016/j.ijfatigue.2020.105579 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Not Required This project has received funding from the European Union’s Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No. 686600. 2025-03-26T15:46:09.6541713 2020-03-25T11:20:45.6210189 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering J.P. Rouse 1 B. Engel 2 C.J. Hyde 3 S.J. Pattison 4 Mark Whittaker 0000-0002-5854-0726 5 Paul Jones 6 Ben Cockings 7 Nick Barnard 8 53862__16976__b7f78df2b2994602b98c8ca7bd08126d.pdf 53862.pdf 2020-03-30T15:28:54.5264436 Output 1021048 application/pdf Accepted Manuscript true 2021-03-11T00:00:00.0000000 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
A viscoelastic – viscoplastic material model for superalloy applications |
spellingShingle |
A viscoelastic – viscoplastic material model for superalloy applications Mark Whittaker Paul Jones Ben Cockings Nick Barnard |
title_short |
A viscoelastic – viscoplastic material model for superalloy applications |
title_full |
A viscoelastic – viscoplastic material model for superalloy applications |
title_fullStr |
A viscoelastic – viscoplastic material model for superalloy applications |
title_full_unstemmed |
A viscoelastic – viscoplastic material model for superalloy applications |
title_sort |
A viscoelastic – viscoplastic material model for superalloy applications |
author_id_str_mv |
a146c6d442cb2c466d096179f9ac97ca 7e010541556fca2420f17b3e58860108 998ffd9fa65fa0c2ffc718a5bff10cdd dc4a58e614bc6a1d99812a3acfdd9034 |
author_id_fullname_str_mv |
a146c6d442cb2c466d096179f9ac97ca_***_Mark Whittaker 7e010541556fca2420f17b3e58860108_***_Paul Jones 998ffd9fa65fa0c2ffc718a5bff10cdd_***_Ben Cockings dc4a58e614bc6a1d99812a3acfdd9034_***_Nick Barnard |
author |
Mark Whittaker Paul Jones Ben Cockings Nick Barnard |
author2 |
J.P. Rouse B. Engel C.J. Hyde S.J. Pattison Mark Whittaker Paul Jones Ben Cockings Nick Barnard |
format |
Journal article |
container_title |
International Journal of Fatigue |
container_volume |
136 |
container_start_page |
105579 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0142-1123 1879-3452 |
doi_str_mv |
10.1016/j.ijfatigue.2020.105579 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
An understanding of rate dependency over a wide range of time scales is vitally important in approximating the transient response of critical components operating in extreme environments. Many examples of viscoplastic model formulations can be found in the literature, wherein all rate dependency is assumed to occur after yielding. Such models neglect any viscous effects during elastic deformation. In the present work, a unified viscoelastic – viscoplastic material model is developed for the Nickel superalloy RR1000. Particular emphasis is placed on model parameter determination, which is accomplished using standard cyclic plasticity and stress relaxation experimental data. |
published_date |
2020-07-01T07:55:34Z |
_version_ |
1827823717590237184 |
score |
11.056294 |