Journal article 939 views 403 downloads
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver
Engineering Fracture Mechanics, Volume: 229, Start page: 106928
Swansea University Authors: Bin Chen, Yanan Sun, Beatriz Barboza, Andrew Barron , Chenfeng Li
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (24.22MB)
DOI (Published version): 10.1016/j.engfracmech.2020.106928
Abstract
With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybri...
Published in: | Engineering Fracture Mechanics |
---|---|
ISSN: | 0013-7944 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53616 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-02-21T13:49:58Z |
---|---|
last_indexed |
2023-01-11T14:31:15Z |
id |
cronfa53616 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-12-07T16:38:29.5026767</datestamp><bib-version>v2</bib-version><id>53616</id><entry>2020-02-21</entry><title>Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver</title><swanseaauthors><author><sid>84c6830c30f7d443b3fbb890809e6242</sid><firstname>Bin</firstname><surname>Chen</surname><name>Bin Chen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>908037010ba1326733dce8fde3a8e31d</sid><firstname>Yanan</firstname><surname>Sun</surname><name>Yanan Sun</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ec9f4313e27cff49daaa0445a02148f5</sid><firstname>Beatriz</firstname><surname>Barboza</surname><name>Beatriz Barboza</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>92e452f20936d688d36f91c78574241d</sid><ORCID>0000-0002-2018-8288</ORCID><firstname>Andrew</firstname><surname>Barron</surname><name>Andrew Barron</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-02-21</date><deptcode>FGSEN</deptcode><abstract>With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence.</abstract><type>Journal Article</type><journal>Engineering Fracture Mechanics</journal><volume>229</volume><journalNumber/><paginationStart>106928</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0013-7944</issnPrint><issnElectronic/><keywords>Phase field method; Fluid-driven fracture; Porous media; Finite element method; Finite volume method; Discrete fracture network</keywords><publishedDay>15</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-15</publishedDate><doi>10.1016/j.engfracmech.2020.106928</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-07T16:38:29.5026767</lastEdited><Created>2020-02-21T11:06:03.4546395</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Bin</firstname><surname>Chen</surname><order>1</order></author><author><firstname>Yanan</firstname><surname>Sun</surname><order>2</order></author><author><firstname>Beatriz</firstname><surname>Barboza</surname><order>3</order></author><author><firstname>Andrew</firstname><surname>Barron</surname><orcid>0000-0002-2018-8288</orcid><order>4</order></author><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>5</order></author></authors><documents><document><filename>53616__16782__b7b61d1d7d114f009ed65d0489b06f2f.pdf</filename><originalFilename>53616.pdf</originalFilename><uploaded>2020-03-06T10:33:40.1847153</uploaded><type>Output</type><contentLength>25397752</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-14T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-12-07T16:38:29.5026767 v2 53616 2020-02-21 Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver 84c6830c30f7d443b3fbb890809e6242 Bin Chen Bin Chen true false 908037010ba1326733dce8fde3a8e31d Yanan Sun Yanan Sun true false ec9f4313e27cff49daaa0445a02148f5 Beatriz Barboza Beatriz Barboza true false 92e452f20936d688d36f91c78574241d 0000-0002-2018-8288 Andrew Barron Andrew Barron true false 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2020-02-21 FGSEN With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence. Journal Article Engineering Fracture Mechanics 229 106928 Elsevier BV 0013-7944 Phase field method; Fluid-driven fracture; Porous media; Finite element method; Finite volume method; Discrete fracture network 15 4 2020 2020-04-15 10.1016/j.engfracmech.2020.106928 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2022-12-07T16:38:29.5026767 2020-02-21T11:06:03.4546395 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Bin Chen 1 Yanan Sun 2 Beatriz Barboza 3 Andrew Barron 0000-0002-2018-8288 4 Chenfeng Li 0000-0003-0441-211X 5 53616__16782__b7b61d1d7d114f009ed65d0489b06f2f.pdf 53616.pdf 2020-03-06T10:33:40.1847153 Output 25397752 application/pdf Accepted Manuscript true 2021-02-14T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
title |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
spellingShingle |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver Bin Chen Yanan Sun Beatriz Barboza Andrew Barron Chenfeng Li |
title_short |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
title_full |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
title_fullStr |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
title_full_unstemmed |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
title_sort |
Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver |
author_id_str_mv |
84c6830c30f7d443b3fbb890809e6242 908037010ba1326733dce8fde3a8e31d ec9f4313e27cff49daaa0445a02148f5 92e452f20936d688d36f91c78574241d 82fe170d5ae2c840e538a36209e5a3ac |
author_id_fullname_str_mv |
84c6830c30f7d443b3fbb890809e6242_***_Bin Chen 908037010ba1326733dce8fde3a8e31d_***_Yanan Sun ec9f4313e27cff49daaa0445a02148f5_***_Beatriz Barboza 92e452f20936d688d36f91c78574241d_***_Andrew Barron 82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li |
author |
Bin Chen Yanan Sun Beatriz Barboza Andrew Barron Chenfeng Li |
author2 |
Bin Chen Yanan Sun Beatriz Barboza Andrew Barron Chenfeng Li |
format |
Journal article |
container_title |
Engineering Fracture Mechanics |
container_volume |
229 |
container_start_page |
106928 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0013-7944 |
doi_str_mv |
10.1016/j.engfracmech.2020.106928 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
With an intrinsic advantage in describing complex fracture networks, the phase field method has demonstrated promising potential for the simulation of hydraulic fracturing processes in recent literatures. We critically examine the existing phase-field hydraulic fracturing models, and propose a hybrid solution scheme with a revised fluid model. Specifically, the formation deformation and phase field are solved using the finite element method (FEM), while the fluid flows are solved using the finite volume method (FVM). The proposed hybrid scheme is validated with the analytical solution for the toughness-dominated fracture propagation and is tested on the complex hydraulic fracturing process in a naturally fractured formation. Demonstrated by numerical examples, the proposed hybrid phase-field framework has several advantages: (1) it captures the effect of fluid pressure inside the fracture and reservoir more accurately than existing models; (2) it provides a sharper capture of formation fractures; (3) it avoids the nonphysical oscillation of fluid pressure when using a pure FEM solver; and (4) it has a superior performance in mesh and time step convergence. |
published_date |
2020-04-15T04:06:39Z |
_version_ |
1763753485791133696 |
score |
11.037603 |