No Cover Image

Journal article 854 views

A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence

Chi-Hua Yu, Zhao Qin, Francisco Martin-Martinez Orcid Logo, Markus J. Buehler

ACS Nano, Volume: 13, Issue: 7, Pages: 7471 - 7482

Swansea University Author: Francisco Martin-Martinez Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: ACS Nano
ISSN: 1936-0851 1936-086X
Published: American Chemical Society (ACS) 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53481
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-03-25T19:47:04Z
last_indexed 2020-10-16T03:06:25Z
id cronfa53481
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-10-15T17:05:18.7806034</datestamp><bib-version>v2</bib-version><id>53481</id><entry>2019-06-05</entry><title>A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence</title><swanseaauthors><author><sid>a5907aac618ec107662c888f6ead0e4a</sid><ORCID>0000-0001-7149-5512</ORCID><firstname>Francisco</firstname><surname>Martin-Martinez</surname><name>Francisco Martin-Martinez</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-05</date><deptcode>CHEM</deptcode><abstract/><type>Journal Article</type><journal>ACS Nano</journal><volume>13</volume><journalNumber>7</journalNumber><paginationStart>7471</paginationStart><paginationEnd>7482</paginationEnd><publisher>American Chemical Society (ACS)</publisher><issnPrint>1936-0851</issnPrint><issnElectronic>1936-086X</issnElectronic><keywords>protein; structural analysis; sonification; artificial intelligence; recurrent neural networks; molecular mechanics</keywords><publishedDay>23</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-07-23</publishedDate><doi>10.1021/acsnano.9b02180</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemistry</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-15T17:05:18.7806034</lastEdited><Created>2019-06-05T00:00:00.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Chi-Hua</firstname><surname>Yu</surname><order>1</order></author><author><firstname>Zhao</firstname><surname>Qin</surname><order>2</order></author><author><firstname>Francisco</firstname><surname>Martin-Martinez</surname><orcid>0000-0001-7149-5512</orcid><order>3</order></author><author><firstname>Markus J.</firstname><surname>Buehler</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2020-10-15T17:05:18.7806034 v2 53481 2019-06-05 A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence a5907aac618ec107662c888f6ead0e4a 0000-0001-7149-5512 Francisco Martin-Martinez Francisco Martin-Martinez true false 2019-06-05 CHEM Journal Article ACS Nano 13 7 7471 7482 American Chemical Society (ACS) 1936-0851 1936-086X protein; structural analysis; sonification; artificial intelligence; recurrent neural networks; molecular mechanics 23 7 2019 2019-07-23 10.1021/acsnano.9b02180 COLLEGE NANME Chemistry COLLEGE CODE CHEM Swansea University 2020-10-15T17:05:18.7806034 2019-06-05T00:00:00.0000000 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Chi-Hua Yu 1 Zhao Qin 2 Francisco Martin-Martinez 0000-0001-7149-5512 3 Markus J. Buehler 4
title A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
spellingShingle A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
Francisco Martin-Martinez
title_short A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
title_full A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
title_fullStr A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
title_full_unstemmed A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
title_sort A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
author_id_str_mv a5907aac618ec107662c888f6ead0e4a
author_id_fullname_str_mv a5907aac618ec107662c888f6ead0e4a_***_Francisco Martin-Martinez
author Francisco Martin-Martinez
author2 Chi-Hua Yu
Zhao Qin
Francisco Martin-Martinez
Markus J. Buehler
format Journal article
container_title ACS Nano
container_volume 13
container_issue 7
container_start_page 7471
publishDate 2019
institution Swansea University
issn 1936-0851
1936-086X
doi_str_mv 10.1021/acsnano.9b02180
publisher American Chemical Society (ACS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry
document_store_str 0
active_str 0
published_date 2019-07-23T04:06:25Z
_version_ 1763753470832148480
score 11.037253