No Cover Image

Journal article 1103 views 327 downloads

In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light

Anthony Lewis, Joel Troughton, Benjamin Smith, James McGettrick Orcid Logo, Tom Dunlop Orcid Logo, Francesca De Rossi Orcid Logo, Adam Pockett, Michael Spence, Matt Carnie Orcid Logo, Trystan Watson Orcid Logo, Cecile Charbonneau

Solar Energy Materials and Solar Cells, Volume: 209, Start page: 110448

Swansea University Authors: Anthony Lewis, Joel Troughton, James McGettrick Orcid Logo, Tom Dunlop Orcid Logo, Francesca De Rossi Orcid Logo, Adam Pockett, Michael Spence, Matt Carnie Orcid Logo, Trystan Watson Orcid Logo, Cecile Charbonneau

  • lewis2020.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (2.39MB)

Abstract

Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a T...

Full description

Published in: Solar Energy Materials and Solar Cells
ISSN: 0927-0248
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53418
first_indexed 2020-02-03T19:23:29Z
last_indexed 2021-12-02T04:08:43Z
id cronfa53418
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-12-01T14:01:46.0367027</datestamp><bib-version>v2</bib-version><id>53418</id><entry>2020-02-03</entry><title>In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light</title><swanseaauthors><author><sid>328c21711ee3091505363e2b5060fba0</sid><firstname>Anthony</firstname><surname>Lewis</surname><name>Anthony Lewis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dc3109d39ae4673951d8b2d9cd0c9df6</sid><firstname>Joel</firstname><surname>Troughton</surname><name>Joel Troughton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>04b56f7760ea2de5fd65985ff510d625</sid><ORCID>0000-0002-6591-5928</ORCID><firstname>Francesca</firstname><surname>De Rossi</surname><name>Francesca De Rossi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>801454eb7d42eeb5165b73fb362381ee</sid><firstname>Michael</firstname><surname>Spence</surname><name>Michael Spence</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-02-03</date><deptcode>EAAS</deptcode><abstract>Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0&#x2013;50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of &#x2265;15 sprays over small to large areas (0.2 mm2&#x2013;1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun.</abstract><type>Journal Article</type><journal>Solar Energy Materials and Solar Cells</journal><volume>209</volume><journalNumber/><paginationStart>110448</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0927-0248</issnPrint><issnElectronic/><keywords>TiO2 compact layer, Materials characterisation, Planar perovskite solar cells, Low light performance</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-06-01</publishedDate><doi>10.1016/j.solmat.2020.110448</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-12-01T14:01:46.0367027</lastEdited><Created>2020-02-03T15:40:23.8045755</Created><path><level id="1">Professional Services</level><level id="2">ISS - Uncategorised</level></path><authors><author><firstname>Anthony</firstname><surname>Lewis</surname><order>1</order></author><author><firstname>Joel</firstname><surname>Troughton</surname><order>2</order></author><author><firstname>Benjamin</firstname><surname>Smith</surname><order>3</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>4</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>5</order></author><author><firstname>Francesca</firstname><surname>De Rossi</surname><orcid>0000-0002-6591-5928</orcid><order>6</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>7</order></author><author><firstname>Michael</firstname><surname>Spence</surname><order>8</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>9</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>10</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>11</order></author></authors><documents><document><filename>53418__16718__b769b089bc6d4c8ab311867ba021f6ee.pdf</filename><originalFilename>lewis2020.pdf</originalFilename><uploaded>2020-02-28T14:50:23.6028711</uploaded><type>Output</type><contentLength>2510880</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-22T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-12-01T14:01:46.0367027 v2 53418 2020-02-03 In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light 328c21711ee3091505363e2b5060fba0 Anthony Lewis Anthony Lewis true false dc3109d39ae4673951d8b2d9cd0c9df6 Joel Troughton Joel Troughton true false bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false 04b56f7760ea2de5fd65985ff510d625 0000-0002-6591-5928 Francesca De Rossi Francesca De Rossi true false de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false 801454eb7d42eeb5165b73fb362381ee Michael Spence Michael Spence true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false 2020-02-03 EAAS Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0–50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of ≥15 sprays over small to large areas (0.2 mm2–1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun. Journal Article Solar Energy Materials and Solar Cells 209 110448 Elsevier BV 0927-0248 TiO2 compact layer, Materials characterisation, Planar perovskite solar cells, Low light performance 1 6 2020 2020-06-01 10.1016/j.solmat.2020.110448 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-12-01T14:01:46.0367027 2020-02-03T15:40:23.8045755 Professional Services ISS - Uncategorised Anthony Lewis 1 Joel Troughton 2 Benjamin Smith 3 James McGettrick 0000-0002-7719-2958 4 Tom Dunlop 0000-0002-5851-8713 5 Francesca De Rossi 0000-0002-6591-5928 6 Adam Pockett 7 Michael Spence 8 Matt Carnie 0000-0002-4232-1967 9 Trystan Watson 0000-0002-8015-1436 10 Cecile Charbonneau 11 53418__16718__b769b089bc6d4c8ab311867ba021f6ee.pdf lewis2020.pdf 2020-02-28T14:50:23.6028711 Output 2510880 application/pdf Accepted Manuscript true 2021-02-22T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng http://creativecommons.org/licenses/by-nc-nd/4.0/
title In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
spellingShingle In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
Anthony Lewis
Joel Troughton
James McGettrick
Tom Dunlop
Francesca De Rossi
Adam Pockett
Michael Spence
Matt Carnie
Trystan Watson
Cecile Charbonneau
title_short In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
title_full In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
title_fullStr In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
title_full_unstemmed In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
title_sort In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
author_id_str_mv 328c21711ee3091505363e2b5060fba0
dc3109d39ae4673951d8b2d9cd0c9df6
bdbacc591e2de05180e0fd3cc13fa480
809395460ab1e6b53a906b136d919c41
04b56f7760ea2de5fd65985ff510d625
de06433fccc0514dcf45aa9d1fc5c60f
801454eb7d42eeb5165b73fb362381ee
73b367694366a646b90bb15db32bb8c0
a210327b52472cfe8df9b8108d661457
4dc059714847cb22ed922ab058950560
author_id_fullname_str_mv 328c21711ee3091505363e2b5060fba0_***_Anthony Lewis
dc3109d39ae4673951d8b2d9cd0c9df6_***_Joel Troughton
bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick
809395460ab1e6b53a906b136d919c41_***_Tom Dunlop
04b56f7760ea2de5fd65985ff510d625_***_Francesca De Rossi
de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett
801454eb7d42eeb5165b73fb362381ee_***_Michael Spence
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
author Anthony Lewis
Joel Troughton
James McGettrick
Tom Dunlop
Francesca De Rossi
Adam Pockett
Michael Spence
Matt Carnie
Trystan Watson
Cecile Charbonneau
author2 Anthony Lewis
Joel Troughton
Benjamin Smith
James McGettrick
Tom Dunlop
Francesca De Rossi
Adam Pockett
Michael Spence
Matt Carnie
Trystan Watson
Cecile Charbonneau
format Journal article
container_title Solar Energy Materials and Solar Cells
container_volume 209
container_start_page 110448
publishDate 2020
institution Swansea University
issn 0927-0248
doi_str_mv 10.1016/j.solmat.2020.110448
publisher Elsevier BV
college_str Professional Services
hierarchytype
hierarchy_top_id professionalservices
hierarchy_top_title Professional Services
hierarchy_parent_id professionalservices
hierarchy_parent_title Professional Services
department_str ISS - Uncategorised{{{_:::_}}}Professional Services{{{_:::_}}}ISS - Uncategorised
document_store_str 1
active_str 0
description Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0–50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of ≥15 sprays over small to large areas (0.2 mm2–1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun.
published_date 2020-06-01T07:52:09Z
_version_ 1821391117961134080
score 11.364387