Journal article 1103 views 327 downloads
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light
Solar Energy Materials and Solar Cells, Volume: 209, Start page: 110448
Swansea University Authors: Anthony Lewis, Joel Troughton, James McGettrick , Tom Dunlop , Francesca De Rossi , Adam Pockett, Michael Spence, Matt Carnie , Trystan Watson , Cecile Charbonneau
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (2.39MB)
DOI (Published version): 10.1016/j.solmat.2020.110448
Abstract
Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a T...
Published in: | Solar Energy Materials and Solar Cells |
---|---|
ISSN: | 0927-0248 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53418 |
first_indexed |
2020-02-03T19:23:29Z |
---|---|
last_indexed |
2021-12-02T04:08:43Z |
id |
cronfa53418 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-12-01T14:01:46.0367027</datestamp><bib-version>v2</bib-version><id>53418</id><entry>2020-02-03</entry><title>In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light</title><swanseaauthors><author><sid>328c21711ee3091505363e2b5060fba0</sid><firstname>Anthony</firstname><surname>Lewis</surname><name>Anthony Lewis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dc3109d39ae4673951d8b2d9cd0c9df6</sid><firstname>Joel</firstname><surname>Troughton</surname><name>Joel Troughton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>04b56f7760ea2de5fd65985ff510d625</sid><ORCID>0000-0002-6591-5928</ORCID><firstname>Francesca</firstname><surname>De Rossi</surname><name>Francesca De Rossi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de06433fccc0514dcf45aa9d1fc5c60f</sid><firstname>Adam</firstname><surname>Pockett</surname><name>Adam Pockett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>801454eb7d42eeb5165b73fb362381ee</sid><firstname>Michael</firstname><surname>Spence</surname><name>Michael Spence</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-02-03</date><deptcode>EAAS</deptcode><abstract>Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0–50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of ≥15 sprays over small to large areas (0.2 mm2–1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun.</abstract><type>Journal Article</type><journal>Solar Energy Materials and Solar Cells</journal><volume>209</volume><journalNumber/><paginationStart>110448</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0927-0248</issnPrint><issnElectronic/><keywords>TiO2 compact layer, Materials characterisation, Planar perovskite solar cells, Low light performance</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-06-01</publishedDate><doi>10.1016/j.solmat.2020.110448</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-12-01T14:01:46.0367027</lastEdited><Created>2020-02-03T15:40:23.8045755</Created><path><level id="1">Professional Services</level><level id="2">ISS - Uncategorised</level></path><authors><author><firstname>Anthony</firstname><surname>Lewis</surname><order>1</order></author><author><firstname>Joel</firstname><surname>Troughton</surname><order>2</order></author><author><firstname>Benjamin</firstname><surname>Smith</surname><order>3</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>4</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>5</order></author><author><firstname>Francesca</firstname><surname>De Rossi</surname><orcid>0000-0002-6591-5928</orcid><order>6</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>7</order></author><author><firstname>Michael</firstname><surname>Spence</surname><order>8</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>9</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>10</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><order>11</order></author></authors><documents><document><filename>53418__16718__b769b089bc6d4c8ab311867ba021f6ee.pdf</filename><originalFilename>lewis2020.pdf</originalFilename><uploaded>2020-02-28T14:50:23.6028711</uploaded><type>Output</type><contentLength>2510880</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-22T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-12-01T14:01:46.0367027 v2 53418 2020-02-03 In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light 328c21711ee3091505363e2b5060fba0 Anthony Lewis Anthony Lewis true false dc3109d39ae4673951d8b2d9cd0c9df6 Joel Troughton Joel Troughton true false bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false 04b56f7760ea2de5fd65985ff510d625 0000-0002-6591-5928 Francesca De Rossi Francesca De Rossi true false de06433fccc0514dcf45aa9d1fc5c60f Adam Pockett Adam Pockett true false 801454eb7d42eeb5165b73fb362381ee Michael Spence Michael Spence true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 4dc059714847cb22ed922ab058950560 Cecile Charbonneau Cecile Charbonneau true false 2020-02-03 EAAS Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0–50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of ≥15 sprays over small to large areas (0.2 mm2–1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun. Journal Article Solar Energy Materials and Solar Cells 209 110448 Elsevier BV 0927-0248 TiO2 compact layer, Materials characterisation, Planar perovskite solar cells, Low light performance 1 6 2020 2020-06-01 10.1016/j.solmat.2020.110448 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-12-01T14:01:46.0367027 2020-02-03T15:40:23.8045755 Professional Services ISS - Uncategorised Anthony Lewis 1 Joel Troughton 2 Benjamin Smith 3 James McGettrick 0000-0002-7719-2958 4 Tom Dunlop 0000-0002-5851-8713 5 Francesca De Rossi 0000-0002-6591-5928 6 Adam Pockett 7 Michael Spence 8 Matt Carnie 0000-0002-4232-1967 9 Trystan Watson 0000-0002-8015-1436 10 Cecile Charbonneau 11 53418__16718__b769b089bc6d4c8ab311867ba021f6ee.pdf lewis2020.pdf 2020-02-28T14:50:23.6028711 Output 2510880 application/pdf Accepted Manuscript true 2021-02-22T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
spellingShingle |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light Anthony Lewis Joel Troughton James McGettrick Tom Dunlop Francesca De Rossi Adam Pockett Michael Spence Matt Carnie Trystan Watson Cecile Charbonneau |
title_short |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
title_full |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
title_fullStr |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
title_full_unstemmed |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
title_sort |
In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light |
author_id_str_mv |
328c21711ee3091505363e2b5060fba0 dc3109d39ae4673951d8b2d9cd0c9df6 bdbacc591e2de05180e0fd3cc13fa480 809395460ab1e6b53a906b136d919c41 04b56f7760ea2de5fd65985ff510d625 de06433fccc0514dcf45aa9d1fc5c60f 801454eb7d42eeb5165b73fb362381ee 73b367694366a646b90bb15db32bb8c0 a210327b52472cfe8df9b8108d661457 4dc059714847cb22ed922ab058950560 |
author_id_fullname_str_mv |
328c21711ee3091505363e2b5060fba0_***_Anthony Lewis dc3109d39ae4673951d8b2d9cd0c9df6_***_Joel Troughton bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick 809395460ab1e6b53a906b136d919c41_***_Tom Dunlop 04b56f7760ea2de5fd65985ff510d625_***_Francesca De Rossi de06433fccc0514dcf45aa9d1fc5c60f_***_Adam Pockett 801454eb7d42eeb5165b73fb362381ee_***_Michael Spence 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie a210327b52472cfe8df9b8108d661457_***_Trystan Watson 4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau |
author |
Anthony Lewis Joel Troughton James McGettrick Tom Dunlop Francesca De Rossi Adam Pockett Michael Spence Matt Carnie Trystan Watson Cecile Charbonneau |
author2 |
Anthony Lewis Joel Troughton Benjamin Smith James McGettrick Tom Dunlop Francesca De Rossi Adam Pockett Michael Spence Matt Carnie Trystan Watson Cecile Charbonneau |
format |
Journal article |
container_title |
Solar Energy Materials and Solar Cells |
container_volume |
209 |
container_start_page |
110448 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0927-0248 |
doi_str_mv |
10.1016/j.solmat.2020.110448 |
publisher |
Elsevier BV |
college_str |
Professional Services |
hierarchytype |
|
hierarchy_top_id |
professionalservices |
hierarchy_top_title |
Professional Services |
hierarchy_parent_id |
professionalservices |
hierarchy_parent_title |
Professional Services |
department_str |
ISS - Uncategorised{{{_:::_}}}Professional Services{{{_:::_}}}ISS - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Properties of the electron transport layer (ETL) are known to influence the performance of lead halide perovskite solar cells (PSCs). But so far very little emphasis has been given on the increased impact of this layer at low light. In this work we compare the effect of thickness and coverage of a TiO2 compact layer on the performance and hysteresis of methyl ammonium lead iodide planar devices tested under 200 lux vs. 1 sun illumination. Standard TiO2 layers are produced with incremental thickness and coverage using sequential spray pyrolysis of a Ti-acetylacetonate precursor (0–50 sprays, 1 spray ~ 1 nm TiO2). Thorough materials characterisation combining FEG-SEM, XPS, and cyclic voltammetry shows that a crystalline, nearly pin-hole free TiO2 layer is achieved by deposition of ≥15 sprays over small to large areas (0.2 mm2–1 cm2). Device performance is affected by two main parameters, namely the coverage yield and thickness of the TiO2 layer, especially under 200 lux illumination. A 25 vs. 50 sprays-TiO2 layer is found to provide the best compromise between coverage and thickness and avoid charge recombination at the TiO2/perovskite interface whilst minimizing resistive losses with 11.7% average PCE at 200 lux vs 7.8% under 1 sun. Finally, the analysis of I/V forward vs. reverse scans and open circuit voltage decay data suggests that hysteresis is greatly affected by the capacitive properties of the ETL at low light, whilst other phenomena such as ion migrations may dominate under 1 sun. |
published_date |
2020-06-01T07:52:09Z |
_version_ |
1821391117961134080 |
score |
11.364387 |