No Cover Image

Journal article 828 views 276 downloads

Global well-posedness and large deviations for 3D stochastic Burgers equations

Rangrang Zhang, Guoli Zhou, Boling Guo, Jiang-lun Wu

Zeitschrift für angewandte Mathematik und Physik, Volume: 71, Issue: 1

Swansea University Author: Jiang-lun Wu

Abstract

In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a prio...

Full description

Published in: Zeitschrift für angewandte Mathematik und Physik
ISSN: 0044-2275 1420-9039
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53378
first_indexed 2020-01-28T19:39:05Z
last_indexed 2020-09-17T03:16:36Z
id cronfa53378
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-01-28T14:34:47.0705505</datestamp><bib-version>v2</bib-version><id>53378</id><entry>2020-01-28</entry><title>Global well-posedness and large deviations for 3D stochastic Burgers equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-01-28</date><abstract>In this paper, we study the stochastic vector-valued Burgers equations with non &#x2212; periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.</abstract><type>Journal Article</type><journal>Zeitschrift f&#xFC;r angewandte Mathematik und Physik</journal><volume>71</volume><journalNumber>1</journalNumber><publisher>Springer Science and Business Media LLC</publisher><issnPrint>0044-2275</issnPrint><issnElectronic>1420-9039</issnElectronic><keywords>3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle.</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1007/s00033-020-1259-z</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-01-28T14:34:47.0705505</lastEdited><Created>2020-01-28T14:34:47.0705505</Created><authors><author><firstname>Rangrang</firstname><surname>Zhang</surname><order>1</order></author><author><firstname>Guoli</firstname><surname>Zhou</surname><order>2</order></author><author><firstname>Boling</firstname><surname>Guo</surname><order>3</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>4</order></author></authors><documents><document><filename>53378__16458__db20341c3f4641c89d185350ac83a455.pdf</filename><originalFilename>ZhangZhouGuoWu.pdf</originalFilename><uploaded>2020-01-28T14:38:36.5727155</uploaded><type>Output</type><contentLength>195271</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-01-29T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-01-28T14:34:47.0705505 v2 53378 2020-01-28 Global well-posedness and large deviations for 3D stochastic Burgers equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2020-01-28 In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero. Journal Article Zeitschrift für angewandte Mathematik und Physik 71 1 Springer Science and Business Media LLC 0044-2275 1420-9039 3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle. 1 2 2020 2020-02-01 10.1007/s00033-020-1259-z COLLEGE NANME COLLEGE CODE Swansea University 2020-01-28T14:34:47.0705505 2020-01-28T14:34:47.0705505 Rangrang Zhang 1 Guoli Zhou 2 Boling Guo 3 Jiang-lun Wu 4 53378__16458__db20341c3f4641c89d185350ac83a455.pdf ZhangZhouGuoWu.pdf 2020-01-28T14:38:36.5727155 Output 195271 application/pdf Accepted Manuscript true 2021-01-29T00:00:00.0000000 true eng
title Global well-posedness and large deviations for 3D stochastic Burgers equations
spellingShingle Global well-posedness and large deviations for 3D stochastic Burgers equations
Jiang-lun Wu
title_short Global well-posedness and large deviations for 3D stochastic Burgers equations
title_full Global well-posedness and large deviations for 3D stochastic Burgers equations
title_fullStr Global well-posedness and large deviations for 3D stochastic Burgers equations
title_full_unstemmed Global well-posedness and large deviations for 3D stochastic Burgers equations
title_sort Global well-posedness and large deviations for 3D stochastic Burgers equations
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Rangrang Zhang
Guoli Zhou
Boling Guo
Jiang-lun Wu
format Journal article
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 71
container_issue 1
publishDate 2020
institution Swansea University
issn 0044-2275
1420-9039
doi_str_mv 10.1007/s00033-020-1259-z
publisher Springer Science and Business Media LLC
document_store_str 1
active_str 0
description In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.
published_date 2020-02-01T13:54:55Z
_version_ 1821323344480305152
score 11.048042