Journal article 835 views 96 downloads
Voltammetry at Hexamethyl-P-Terphenyl Poly(Benzimidazolium) (HMT-PMBI)-Coated Glassy Carbon Electrodes: Charge Transport Properties and Detection of Uric and Ascorbic Acid
Sensors, Volume: 20, Issue: 2, Start page: 443
Swansea University Authors: Matthew Rees , Paolo Bertoncello
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (1.61MB)
DOI (Published version): 10.3390/s20020443
Abstract
We describe the voltammetric behavior of an anion-exchange membrane, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI). The anion-exchange properties of HMT-PMBI chemically modified electrodes were investigated using K4Fe(CN)6 and K2IrCl6 as redox probes. The permselectivity properties of HMT-...
Published in: | Sensors |
---|---|
ISSN: | 1424-8220 |
Published: |
MDPI AG
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53248 |
Abstract: |
We describe the voltammetric behavior of an anion-exchange membrane, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI). The anion-exchange properties of HMT-PMBI chemically modified electrodes were investigated using K4Fe(CN)6 and K2IrCl6 as redox probes. The permselectivity properties of HMT-PMBI chemically modified electrodes were ascertained using tris(2-2’)bipyridyl-ruthenium(II) chloride Ru(bpy)32+. Cyclic voltammetry and chronoamperometry were utilized to extract parameters such as the concentration of the redox mediators inside the films and the apparent diffusion coefficients. We found the concentration of K4Fe(CN)6 and K2IrCl6 redox species within HMT-PMBI-coated films to be on the order of 0.04–0.1 mol·dm−3, and values of Dapp ca. 10−10–10−9 cm2·s−1. To evaluate the possibility of using such a polymer coating in electroanalysis, HMT-PMBI-modified electrodes were utilized for the voltammetric detection of uric acid in artificial urine, Surine® and ascorbic acid in Vitamin C samples. The results showed that HMT-PMBI-coated electrodes can detect uric acid in Surine® with a limit of detection (LoD) of 7.7 µM, sensitivity of 0.14 µA·µM−1·cm−2, and linear range between 5 μM and 200 μM, whereas for Vitamin C tablets, the LoD is 41.4 µM, the sensitivity is 0.08 µA·µM−1·cm−2, and the linear range is between 25 μM and 450 μM. |
---|---|
Keywords: |
chemically modified electrodes; voltammetry; sensors; uric acid; ascorbic acid; hexamethyl-p-terphenyl poly(benzimidazolium), anion exchange polymer |
College: |
Faculty of Science and Engineering |
Issue: |
2 |
Start Page: |
443 |