Journal article 22816 views 192 downloads
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes
Journal of Coatings Technology and Research, Volume: 17, Issue: 2, Pages: 447 - 459
Swansea University Authors: Sarah-Jane Potts , Christopher Phillips , Eifion Jewell , Ben Clifford , Tim Claypole
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).
Download (4.3MB)
DOI (Published version): 10.1007/s11998-019-00291-6
Abstract
Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred thro...
Published in: | Journal of Coatings Technology and Research |
---|---|
ISSN: | 1547-0091 1935-3804 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53125 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2020-01-07T13:47:06Z |
---|---|
last_indexed |
2020-05-18T19:07:21Z |
id |
cronfa53125 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-05-18T17:42:59.1605167</datestamp><bib-version>v2</bib-version><id>53125</id><entry>2020-01-07</entry><title>High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes</title><swanseaauthors><author><sid>8c536622ba65fa1e04912d0e2ede88f7</sid><ORCID>0000-0003-0208-2364</ORCID><firstname>Sarah-Jane</firstname><surname>Potts</surname><name>Sarah-Jane Potts</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>13dc152c178d51abfe0634445b0acf07</sid><ORCID>0000-0002-6894-2251</ORCID><firstname>Eifion</firstname><surname>Jewell</surname><name>Eifion Jewell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>eaaa538f5503e162cf91e18e06d58843</sid><ORCID>0000-0002-5111-3799</ORCID><firstname>Ben</firstname><surname>Clifford</surname><name>Ben Clifford</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7735385522f1e68a8775b4f709e91d55</sid><ORCID>0000-0003-1393-9634</ORCID><firstname>Tim</firstname><surname>Claypole</surname><name>Tim Claypole</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-01-07</date><deptcode>MTLS</deptcode><abstract>Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred through the mesh and onto the substrate is not fully understood. Existing theories are contradictory and lack experimental validation. Therefore, high-speed imaging was used in combination with a screen-printing simulation rig that was designed to provide good optical access to study ink deposition during the screen-printing process. The variation in the four stages of ink flow through the screen, described in the theory by Messerschmitt, has been quantified with respect to changes in snap-off distance and squeegee speed. Analyses of the images were compared with measurements of the ink properties and corroborated with analyses of the prints. This has provided a better understanding of the mechanism by which the ink transfers from the mesh to the substrate and subsequently separates in screen printing. This could be used as the basis for the development of predictive algorithms, as well as to improve the understanding of how to optimize print quality and performance.</abstract><type>Journal Article</type><journal>Journal of Coatings Technology and Research</journal><volume>17</volume><journalNumber>2</journalNumber><paginationStart>447</paginationStart><paginationEnd>459</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><issnPrint>1547-0091</issnPrint><issnElectronic>1935-3804</issnElectronic><keywords>Ink transfer, Rheology, Printed electronics, Carbon inks, High-speed imaging</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-03-01</publishedDate><doi>10.1007/s11998-019-00291-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-05-18T17:42:59.1605167</lastEdited><Created>2020-01-07T09:58:08.7408303</Created><authors><author><firstname>Sarah-Jane</firstname><surname>Potts</surname><orcid>0000-0003-0208-2364</orcid><order>1</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>2</order></author><author><firstname>Eifion</firstname><surname>Jewell</surname><orcid>0000-0002-6894-2251</orcid><order>3</order></author><author><firstname>Ben</firstname><surname>Clifford</surname><orcid>0000-0002-5111-3799</orcid><order>4</order></author><author><firstname>Yin Cheung</firstname><surname>Lau</surname><order>5</order></author><author><firstname>Tim</firstname><surname>Claypole</surname><orcid>0000-0003-1393-9634</orcid><order>6</order></author></authors><documents><document><filename>53125__16212__208e35f0d758446a8c5cbb9410a17cf4.pdf</filename><originalFilename>potts2019.pdf</originalFilename><uploaded>2020-01-07T10:01:43.4524723</uploaded><type>Output</type><contentLength>4505209</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-01-07T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-05-18T17:42:59.1605167 v2 53125 2020-01-07 High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes 8c536622ba65fa1e04912d0e2ede88f7 0000-0003-0208-2364 Sarah-Jane Potts Sarah-Jane Potts true false cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false 13dc152c178d51abfe0634445b0acf07 0000-0002-6894-2251 Eifion Jewell Eifion Jewell true false eaaa538f5503e162cf91e18e06d58843 0000-0002-5111-3799 Ben Clifford Ben Clifford true false 7735385522f1e68a8775b4f709e91d55 0000-0003-1393-9634 Tim Claypole Tim Claypole true false 2020-01-07 MTLS Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred through the mesh and onto the substrate is not fully understood. Existing theories are contradictory and lack experimental validation. Therefore, high-speed imaging was used in combination with a screen-printing simulation rig that was designed to provide good optical access to study ink deposition during the screen-printing process. The variation in the four stages of ink flow through the screen, described in the theory by Messerschmitt, has been quantified with respect to changes in snap-off distance and squeegee speed. Analyses of the images were compared with measurements of the ink properties and corroborated with analyses of the prints. This has provided a better understanding of the mechanism by which the ink transfers from the mesh to the substrate and subsequently separates in screen printing. This could be used as the basis for the development of predictive algorithms, as well as to improve the understanding of how to optimize print quality and performance. Journal Article Journal of Coatings Technology and Research 17 2 447 459 Springer Science and Business Media LLC 1547-0091 1935-3804 Ink transfer, Rheology, Printed electronics, Carbon inks, High-speed imaging 1 3 2020 2020-03-01 10.1007/s11998-019-00291-6 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-05-18T17:42:59.1605167 2020-01-07T09:58:08.7408303 Sarah-Jane Potts 0000-0003-0208-2364 1 Christopher Phillips 0000-0001-8011-710X 2 Eifion Jewell 0000-0002-6894-2251 3 Ben Clifford 0000-0002-5111-3799 4 Yin Cheung Lau 5 Tim Claypole 0000-0003-1393-9634 6 53125__16212__208e35f0d758446a8c5cbb9410a17cf4.pdf potts2019.pdf 2020-01-07T10:01:43.4524723 Output 4505209 application/pdf Version of Record true 2020-01-07T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
spellingShingle |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes Sarah-Jane Potts Christopher Phillips Eifion Jewell Ben Clifford Tim Claypole |
title_short |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
title_full |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
title_fullStr |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
title_full_unstemmed |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
title_sort |
High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screen-printed carbon pastes |
author_id_str_mv |
8c536622ba65fa1e04912d0e2ede88f7 cc734f776f10b3fb9b43816c9f617bb5 13dc152c178d51abfe0634445b0acf07 eaaa538f5503e162cf91e18e06d58843 7735385522f1e68a8775b4f709e91d55 |
author_id_fullname_str_mv |
8c536622ba65fa1e04912d0e2ede88f7_***_Sarah-Jane Potts cc734f776f10b3fb9b43816c9f617bb5_***_Christopher Phillips 13dc152c178d51abfe0634445b0acf07_***_Eifion Jewell eaaa538f5503e162cf91e18e06d58843_***_Ben Clifford 7735385522f1e68a8775b4f709e91d55_***_Tim Claypole |
author |
Sarah-Jane Potts Christopher Phillips Eifion Jewell Ben Clifford Tim Claypole |
author2 |
Sarah-Jane Potts Christopher Phillips Eifion Jewell Ben Clifford Yin Cheung Lau Tim Claypole |
format |
Journal article |
container_title |
Journal of Coatings Technology and Research |
container_volume |
17 |
container_issue |
2 |
container_start_page |
447 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1547-0091 1935-3804 |
doi_str_mv |
10.1007/s11998-019-00291-6 |
publisher |
Springer Science and Business Media LLC |
document_store_str |
1 |
active_str |
0 |
description |
Screen printing is the most widely used process in the production of printed electronics due to its ability to consistently transfer inks containing a wide range of functional materials onto a range of substrates. However, despite its extensive use, the mechanism by which the ink is transferred through the mesh and onto the substrate is not fully understood. Existing theories are contradictory and lack experimental validation. Therefore, high-speed imaging was used in combination with a screen-printing simulation rig that was designed to provide good optical access to study ink deposition during the screen-printing process. The variation in the four stages of ink flow through the screen, described in the theory by Messerschmitt, has been quantified with respect to changes in snap-off distance and squeegee speed. Analyses of the images were compared with measurements of the ink properties and corroborated with analyses of the prints. This has provided a better understanding of the mechanism by which the ink transfers from the mesh to the substrate and subsequently separates in screen printing. This could be used as the basis for the development of predictive algorithms, as well as to improve the understanding of how to optimize print quality and performance. |
published_date |
2020-03-01T04:05:57Z |
_version_ |
1763753441259159552 |
score |
11.036531 |