Journal article 1256 views 149 downloads
A 3D Unstructured Mesh FDTD Scheme for EM Modelling
Archives of Computational Methods in Engineering
Swansea University Authors: Oubay Hassan , Kenneth Morgan
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).
Download (9.69MB)
DOI (Published version): 10.1007/s11831-019-09395-z
Abstract
The Yee finite difference time domain (FDTD) algorithm is widely used in computational electromagnetics because of its simplicity, low computational costs and divergence free nature. The standard method uses a pair of staggered orthogonal cartesian meshes. However, accuracy losses result when it is...
Published in: | Archives of Computational Methods in Engineering |
---|---|
ISSN: | 1134-3060 1886-1784 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53095 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
The Yee finite difference time domain (FDTD) algorithm is widely used in computational electromagnetics because of its simplicity, low computational costs and divergence free nature. The standard method uses a pair of staggered orthogonal cartesian meshes. However, accuracy losses result when it is used for modelling electromagnetic interactions with objects of arbitrary shape, because of the staircased representation of curved interfaces. For the solution of such problems, we generalise the approach and adopt an unstructured mesh FDTD method. This co-volume method is based upon the use of a Delaunay primal mesh and its high quality Voronoi dual. Computational efficiency is improved by employing a hybrid primal mesh, consisting of tetrahedral elements in the vicinity of curved interfaces and hexahedral elements elsewhere. Difficulties associated with ensuring the necessary quality of the generated meshes will be discussed. The power of the proposed solution approach is demonstrated by considering a range of scattering and/or transmission problems involving perfect electric conductors and isotropic lossy, anisotropic lossy and isotropic frequency dependent chiral materials. |
---|---|
Keywords: |
Co–Volume, Unstructured Mesh, Finite Difference, Chiral, Metamaterial |
College: |
Faculty of Science and Engineering |
Funders: |
EP/K0502935/1 |