Book 1091 views
Realisability and adequacy for (co)induction
Pages: 49 - 60
Swansea University Author: Ulrich Berger
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.4230/OASIcs.CCA.2009.2258
Abstract
We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the...
Published: |
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2009
|
---|---|
Online Access: |
http://drops.dagstuhl.de/opus/volltexte/2009/2258 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa53 |
first_indexed |
2013-07-23T11:49:23Z |
---|---|
last_indexed |
2018-02-09T04:27:21Z |
id |
cronfa53 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2013-10-17T11:56:18.4177127</datestamp><bib-version>v2</bib-version><id>53</id><entry>2012-02-23</entry><title>Realisability and adequacy for (co)induction</title><swanseaauthors><author><sid>61199ae25042a5e629c5398c4a40a4f5</sid><ORCID>0000-0002-7677-3582</ORCID><firstname>Ulrich</firstname><surname>Berger</surname><name>Ulrich Berger</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-23</date><deptcode>MACS</deptcode><abstract>We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis.</abstract><type>Book</type><journal></journal><volume></volume><journalNumber></journalNumber><paginationStart>49</paginationStart><paginationEnd>60</paginationEnd><publisher>Schloss Dagstuhl - Leibniz-Zentrum für Informatik</publisher><placeOfPublication/><issnPrint/><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-12-31</publishedDate><doi>10.4230/OASIcs.CCA.2009.2258</doi><url>http://drops.dagstuhl.de/opus/volltexte/2009/2258</url><notes>In CCA '09, Proc. Sixth Intl. Conference on Computability and Complexity in Analysis, Ljubljana, Slovenia</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-10-17T11:56:18.4177127</lastEdited><Created>2012-02-23T17:01:55.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ulrich</firstname><surname>Berger</surname><orcid>0000-0002-7677-3582</orcid><order>1</order></author><author><firstname>David</firstname><surname>Benton</surname><order>2</order></author><author><firstname>David</firstname><surname>Benton</surname><order>3</order></author><author><firstname>David</firstname><surname>Benton</surname><order>4</order></author><author><firstname>Katharina</firstname><surname>Hall</surname><order>5</order></author><author><firstname>Robert</firstname><surname>Rhys</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2013-10-17T11:56:18.4177127 v2 53 2012-02-23 Realisability and adequacy for (co)induction 61199ae25042a5e629c5398c4a40a4f5 0000-0002-7677-3582 Ulrich Berger Ulrich Berger true false 2012-02-23 MACS We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis. Book 49 60 Schloss Dagstuhl - Leibniz-Zentrum für Informatik 31 12 2009 2009-12-31 10.4230/OASIcs.CCA.2009.2258 http://drops.dagstuhl.de/opus/volltexte/2009/2258 In CCA '09, Proc. Sixth Intl. Conference on Computability and Complexity in Analysis, Ljubljana, Slovenia COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2013-10-17T11:56:18.4177127 2012-02-23T17:01:55.0000000 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ulrich Berger 0000-0002-7677-3582 1 David Benton 2 David Benton 3 David Benton 4 Katharina Hall 5 Robert Rhys 6 |
title |
Realisability and adequacy for (co)induction |
spellingShingle |
Realisability and adequacy for (co)induction Ulrich Berger |
title_short |
Realisability and adequacy for (co)induction |
title_full |
Realisability and adequacy for (co)induction |
title_fullStr |
Realisability and adequacy for (co)induction |
title_full_unstemmed |
Realisability and adequacy for (co)induction |
title_sort |
Realisability and adequacy for (co)induction |
author_id_str_mv |
61199ae25042a5e629c5398c4a40a4f5 |
author_id_fullname_str_mv |
61199ae25042a5e629c5398c4a40a4f5_***_Ulrich Berger |
author |
Ulrich Berger |
author2 |
Ulrich Berger David Benton David Benton David Benton Katharina Hall Robert Rhys |
format |
Book |
container_start_page |
49 |
publishDate |
2009 |
institution |
Swansea University |
doi_str_mv |
10.4230/OASIcs.CCA.2009.2258 |
publisher |
Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://drops.dagstuhl.de/opus/volltexte/2009/2258 |
document_store_str |
0 |
active_str |
0 |
description |
We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis. |
published_date |
2009-12-31T18:03:32Z |
_version_ |
1821338985778118656 |
score |
11.04748 |