Journal article 1305 views 309 downloads

π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices

Hui Liu, Hai-Rui Liu, Feng Yang, Ji-En Yang, Jian Song, Meng Li, Zhe Li, Wing Chung Tsoi Orcid Logo, Martin Chinweokwu Eze, Zhi-Yong Liu, Heng Ma, Min Gao, Zhao-Kui Wang

Journal of Power Sources, Volume: 448, Start page: 227420

Swansea University Author: Wing Chung Tsoi Orcid Logo

  • liu2019(4).pdf

    PDF | Accepted Manuscript

    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

    Download (1.36MB)

Abstract

A π-conjugated small molecule N,N′-bis(naphthalen-1-yl)-N,N’+-bis(phenyl)benzidine (NPB) is introduced into a poly (bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) hole transport layer in inverted perovskite solar cells (PSCs). The NPB doping induces better perovskite crystal growth owing to a str...

Full description

Published in: Journal of Power Sources
ISSN: 0378-7753 1873-2755
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52942
first_indexed 2019-12-03T13:15:02Z
last_indexed 2025-04-11T04:39:30Z
id cronfa52942
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-04-10T15:10:33.6039606</datestamp><bib-version>v2</bib-version><id>52942</id><entry>2019-12-03</entry><title>&#x3C0;-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices</title><swanseaauthors><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-12-03</date><deptcode>EAAS</deptcode><abstract>A &#x3C0;-conjugated small molecule N,N&#x2032;-bis(naphthalen-1-yl)-N,N&#x2019;+-bis(phenyl)benzidine (NPB) is introduced into a poly (bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) hole transport layer in inverted perovskite solar cells (PSCs). The NPB doping induces better perovskite crystal growth owing to a strong &#x3C0;-&#x3C0; interaction with PTAA and cation-&#x3C0; interactions with CH3NH3+ (MA+). In addition, NPB doping not only improves the wettability of PTAA and regulates the perovskite crystallization to achieve a larger grain size, but also moves the valence band energy of the hole transport layer closer to the perovskite layer. Consequently, the fabricated PSCs delivered a power conversion efficiency (PCE) of 20.15%, with a short-circuit current density (JSC) of 22.60&#x202F;mA/cm2 and open-circuit voltage (VOC) of 1.14&#x202F;V. This outcome indicates that PTAA:NPB composite materials present great potential for fabricating high-performance PSCs.</abstract><type>Journal Article</type><journal>Journal of Power Sources</journal><volume>448</volume><journalNumber/><paginationStart>227420</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0378-7753</issnPrint><issnElectronic>1873-2755</issnElectronic><keywords>&#x3C0;-conjugated molecule, Energy level alignment, Charge extraction</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1016/j.jpowsour.2019.227420</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was supported by the National Natural Science Foundation of China (No. 51502081; G11747069), Science and Technique Program of Henan Province (No. 182102210375), Henan Provincial Basic and Frontier Project (No. 152300410088), Henan Provincial Key Science and Technology Research Projects (No. 192102210173) and Key Scientific Research Projects of Henan Education Department (NO. 20A140017). This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). And the International Postdoctoral Exchange Fellowship Program between Helmholtz-Zentrum Berlin f&#xFC;r Materialien und Energie GmbH, OCPC and Soochow University (Chinese home organization).</funders><projectreference/><lastEdited>2025-04-10T15:10:33.6039606</lastEdited><Created>2019-12-03T10:00:11.8688369</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Hui</firstname><surname>Liu</surname><order>1</order></author><author><firstname>Hai-Rui</firstname><surname>Liu</surname><order>2</order></author><author><firstname>Feng</firstname><surname>Yang</surname><order>3</order></author><author><firstname>Ji-En</firstname><surname>Yang</surname><order>4</order></author><author><firstname>Jian</firstname><surname>Song</surname><order>5</order></author><author><firstname>Meng</firstname><surname>Li</surname><order>6</order></author><author><firstname>Zhe</firstname><surname>Li</surname><order>7</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>8</order></author><author><firstname>Martin Chinweokwu</firstname><surname>Eze</surname><order>9</order></author><author><firstname>Zhi-Yong</firstname><surname>Liu</surname><order>10</order></author><author><firstname>Heng</firstname><surname>Ma</surname><order>11</order></author><author><firstname>Min</firstname><surname>Gao</surname><order>12</order></author><author><firstname>Zhao-Kui</firstname><surname>Wang</surname><order>13</order></author></authors><documents><document><filename>52942__16029__5f0cb571e16c4f0caf604068c0433fc7.pdf</filename><originalFilename>liu2019(4).pdf</originalFilename><uploaded>2019-12-03T14:00:40.0322922</uploaded><type>Output</type><contentLength>1422833</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-11-21T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-04-10T15:10:33.6039606 v2 52942 2019-12-03 π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2019-12-03 EAAS A π-conjugated small molecule N,N′-bis(naphthalen-1-yl)-N,N’+-bis(phenyl)benzidine (NPB) is introduced into a poly (bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) hole transport layer in inverted perovskite solar cells (PSCs). The NPB doping induces better perovskite crystal growth owing to a strong π-π interaction with PTAA and cation-π interactions with CH3NH3+ (MA+). In addition, NPB doping not only improves the wettability of PTAA and regulates the perovskite crystallization to achieve a larger grain size, but also moves the valence band energy of the hole transport layer closer to the perovskite layer. Consequently, the fabricated PSCs delivered a power conversion efficiency (PCE) of 20.15%, with a short-circuit current density (JSC) of 22.60 mA/cm2 and open-circuit voltage (VOC) of 1.14 V. This outcome indicates that PTAA:NPB composite materials present great potential for fabricating high-performance PSCs. Journal Article Journal of Power Sources 448 227420 Elsevier BV 0378-7753 1873-2755 π-conjugated molecule, Energy level alignment, Charge extraction 1 2 2020 2020-02-01 10.1016/j.jpowsour.2019.227420 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Not Required This work was supported by the National Natural Science Foundation of China (No. 51502081; G11747069), Science and Technique Program of Henan Province (No. 182102210375), Henan Provincial Basic and Frontier Project (No. 152300410088), Henan Provincial Key Science and Technology Research Projects (No. 192102210173) and Key Scientific Research Projects of Henan Education Department (NO. 20A140017). This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology, and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). And the International Postdoctoral Exchange Fellowship Program between Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, OCPC and Soochow University (Chinese home organization). 2025-04-10T15:10:33.6039606 2019-12-03T10:00:11.8688369 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Hui Liu 1 Hai-Rui Liu 2 Feng Yang 3 Ji-En Yang 4 Jian Song 5 Meng Li 6 Zhe Li 7 Wing Chung Tsoi 0000-0003-3836-5139 8 Martin Chinweokwu Eze 9 Zhi-Yong Liu 10 Heng Ma 11 Min Gao 12 Zhao-Kui Wang 13 52942__16029__5f0cb571e16c4f0caf604068c0433fc7.pdf liu2019(4).pdf 2019-12-03T14:00:40.0322922 Output 1422833 application/pdf Accepted Manuscript true 2020-11-21T00:00:00.0000000 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/
title π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
spellingShingle π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
Wing Chung Tsoi
title_short π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
title_full π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
title_fullStr π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
title_full_unstemmed π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
title_sort π-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices
author_id_str_mv 7e5f541df6635a9a8e1a579ff2de5d56
author_id_fullname_str_mv 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi
author Wing Chung Tsoi
author2 Hui Liu
Hai-Rui Liu
Feng Yang
Ji-En Yang
Jian Song
Meng Li
Zhe Li
Wing Chung Tsoi
Martin Chinweokwu Eze
Zhi-Yong Liu
Heng Ma
Min Gao
Zhao-Kui Wang
format Journal article
container_title Journal of Power Sources
container_volume 448
container_start_page 227420
publishDate 2020
institution Swansea University
issn 0378-7753
1873-2755
doi_str_mv 10.1016/j.jpowsour.2019.227420
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description A π-conjugated small molecule N,N′-bis(naphthalen-1-yl)-N,N’+-bis(phenyl)benzidine (NPB) is introduced into a poly (bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) hole transport layer in inverted perovskite solar cells (PSCs). The NPB doping induces better perovskite crystal growth owing to a strong π-π interaction with PTAA and cation-π interactions with CH3NH3+ (MA+). In addition, NPB doping not only improves the wettability of PTAA and regulates the perovskite crystallization to achieve a larger grain size, but also moves the valence band energy of the hole transport layer closer to the perovskite layer. Consequently, the fabricated PSCs delivered a power conversion efficiency (PCE) of 20.15%, with a short-circuit current density (JSC) of 22.60 mA/cm2 and open-circuit voltage (VOC) of 1.14 V. This outcome indicates that PTAA:NPB composite materials present great potential for fabricating high-performance PSCs.
published_date 2020-02-01T04:53:32Z
_version_ 1836505798743687168
score 11.379022