No Cover Image

Journal article 558 views 94 downloads

Star-shaped triarylamine-based hole-transport materials in perovskite solar cells

Rosinda Fuentes Pineda, Yaroslav Zems, Joel Troughton, Muhammad R. Niazi, Dmitrii F. Perepichka, Trystan Watson Orcid Logo, Neil Robertson

Sustainable Energy & Fuels, Volume: 4, Issue: 2, Pages: 779 - 787

Swansea University Authors: Joel Troughton, Trystan Watson Orcid Logo

  • pineda2019.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

    Download (807.73KB)

Check full text

DOI (Published version): 10.1039/c9se00366e

Abstract

Two novel star-shaped triarylamine-based hole transport materials with triphenylamine (STR1), or a partially oxygen-bridged triphenylamine (STR0), as core and para-substituted triphenylamine side arms were synthesized, fully characterized and studied in perovskite solar cells. Their thermal, optical...

Full description

Published in: Sustainable Energy & Fuels
ISSN: 2398-4902
Published: Royal Society of Chemistry (RSC) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52907
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Two novel star-shaped triarylamine-based hole transport materials with triphenylamine (STR1), or a partially oxygen-bridged triphenylamine (STR0), as core and para-substituted triphenylamine side arms were synthesized, fully characterized and studied in perovskite solar cells. Their thermal, optical, electrochemical and charge transport properties were examined and compared in the context of their molecular structure. Due to its more planar configuration, STR0 showed a red-shifted absorption in comparison with STR1. STR0 also forms a more stable amorphous glassy state and showed higher glass transition temperature than STR1 and spiro-OMeTAD. These HTMs were tested in perovskite solar cells using a device configuration of FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/HTM/Au showing a power conversion efficiency of 13.3% for STR0 and 11.5% for STR1. The STR0-based devices showed higher fill factor and better reproducibility than spiro-OMeTAD-based cells. Without dopant additives, solar cells based on STR0 exhibited a good photocurrent density of 16.63 mA cm−2 and the efficiency improved from a starting PCE of 3.9% to 6.6% after two weeks of storage.
College: Faculty of Science and Engineering
Issue: 2
Start Page: 779
End Page: 787