Journal article 2144 views 470 downloads

Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity

Amir Jalalian-Khakshour, Christopher Phillips Orcid Logo, Lorn Jackson, Tom Dunlop Orcid Logo, Serena Margadonna Orcid Logo, Davide Deganello Orcid Logo

Journal of Materials Science, Volume: 55, Issue: 6, Pages: 2291 - 2302

Swansea University Authors: Amir Jalalian-Khakshour, Christopher Phillips Orcid Logo, Lorn Jackson, Tom Dunlop Orcid Logo, Serena Margadonna Orcid Logo, Davide Deganello Orcid Logo

  • Jalalian-Khakshour2019.pdf

    PDF | Version of Record

    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

    Download (2.07MB)

Abstract

In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (...

Full description

Published in: Journal of Materials Science
ISSN: 0022-2461 1573-4803
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52708
first_indexed 2019-11-12T13:17:29Z
last_indexed 2025-04-17T03:58:45Z
id cronfa52708
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-04-16T15:21:49.1138562</datestamp><bib-version>v2</bib-version><id>52708</id><entry>2019-11-12</entry><title>Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity</title><swanseaauthors><author><sid>694919736843483fdcdb82b5e84b4d4e</sid><ORCID/><firstname>Amir</firstname><surname>Jalalian-Khakshour</surname><name>Amir Jalalian-Khakshour</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>dd3b886030df56c588f644bc7c79173f</sid><firstname>Lorn</firstname><surname>Jackson</surname><name>Lorn Jackson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e31904a10b1b1240b98ab52d9977dfbe</sid><ORCID>0000-0002-6996-6562</ORCID><firstname>Serena</firstname><surname>Margadonna</surname><name>Serena Margadonna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-12</date><abstract>In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 &#xB0;C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16&#x2009;&#xD7;&#x2009;10&#x2212;3 S cm&#x2212;1 when sintered at 1230 &#xB0;C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62&#x2009;&#xD7;&#x2009;10&#x2212;3 S cm&#x2212;1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.</abstract><type>Journal Article</type><journal>Journal of Materials Science</journal><volume>55</volume><journalNumber>6</journalNumber><paginationStart>2291</paginationStart><paginationEnd>2302</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-2461</issnPrint><issnElectronic>1573-4803</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1007/s10853-019-04162-8</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>This project was funded by the EPSRC (UK) Grant number EP/N013727/1 and also by EP/R023581/1 and EP/N020863/1. SEM facilities were provided by the Swansea University AIM Facility; funded in part by the EPSRC (EP/M028267/1), the European Regional Development Fund through the Welsh Government (80708) and the Ser Solar project via Welsh Government.</funders><projectreference/><lastEdited>2025-04-16T15:21:49.1138562</lastEdited><Created>2019-11-12T09:48:12.5843885</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Amir</firstname><surname>Jalalian-Khakshour</surname><orcid/><order>1</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>2</order></author><author><firstname>Lorn</firstname><surname>Jackson</surname><order>3</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>4</order></author><author><firstname>Serena</firstname><surname>Margadonna</surname><orcid>0000-0002-6996-6562</orcid><order>5</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>6</order></author></authors><documents><document><filename>52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf</filename><originalFilename>Jalalian-Khakshour2019.pdf</originalFilename><uploaded>2019-11-12T09:53:30.3217556</uploaded><type>Output</type><contentLength>2170943</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-11-12T00:00:00.0000000</embargoDate><documentNotes>This article is distributed under the terms of the Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/ licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-04-16T15:21:49.1138562 v2 52708 2019-11-12 Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity 694919736843483fdcdb82b5e84b4d4e Amir Jalalian-Khakshour Amir Jalalian-Khakshour true false cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false dd3b886030df56c588f644bc7c79173f Lorn Jackson Lorn Jackson true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false e31904a10b1b1240b98ab52d9977dfbe 0000-0002-6996-6562 Serena Margadonna Serena Margadonna true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false 2019-11-12 In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process. Journal Article Journal of Materials Science 55 6 2291 2302 Springer Science and Business Media LLC 0022-2461 1573-4803 1 2 2020 2020-02-01 10.1007/s10853-019-04162-8 COLLEGE NANME COLLEGE CODE Swansea University This project was funded by the EPSRC (UK) Grant number EP/N013727/1 and also by EP/R023581/1 and EP/N020863/1. SEM facilities were provided by the Swansea University AIM Facility; funded in part by the EPSRC (EP/M028267/1), the European Regional Development Fund through the Welsh Government (80708) and the Ser Solar project via Welsh Government. 2025-04-16T15:21:49.1138562 2019-11-12T09:48:12.5843885 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Amir Jalalian-Khakshour 1 Christopher Phillips 0000-0001-8011-710X 2 Lorn Jackson 3 Tom Dunlop 0000-0002-5851-8713 4 Serena Margadonna 0000-0002-6996-6562 5 Davide Deganello 0000-0001-8341-4177 6 52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf Jalalian-Khakshour2019.pdf 2019-11-12T09:53:30.3217556 Output 2170943 application/pdf Version of Record true 2019-11-12T00:00:00.0000000 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/ licenses/by/4.0/
title Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
spellingShingle Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
Amir Jalalian-Khakshour
Christopher Phillips
Lorn Jackson
Tom Dunlop
Serena Margadonna
Davide Deganello
title_short Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_full Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_fullStr Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_full_unstemmed Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_sort Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
author_id_str_mv 694919736843483fdcdb82b5e84b4d4e
cc734f776f10b3fb9b43816c9f617bb5
dd3b886030df56c588f644bc7c79173f
809395460ab1e6b53a906b136d919c41
e31904a10b1b1240b98ab52d9977dfbe
ea38a0040bdfd3875506189e3629b32a
author_id_fullname_str_mv 694919736843483fdcdb82b5e84b4d4e_***_Amir Jalalian-Khakshour
cc734f776f10b3fb9b43816c9f617bb5_***_Christopher Phillips
dd3b886030df56c588f644bc7c79173f_***_Lorn Jackson
809395460ab1e6b53a906b136d919c41_***_Tom Dunlop
e31904a10b1b1240b98ab52d9977dfbe_***_Serena Margadonna
ea38a0040bdfd3875506189e3629b32a_***_Davide Deganello
author Amir Jalalian-Khakshour
Christopher Phillips
Lorn Jackson
Tom Dunlop
Serena Margadonna
Davide Deganello
author2 Amir Jalalian-Khakshour
Christopher Phillips
Lorn Jackson
Tom Dunlop
Serena Margadonna
Davide Deganello
format Journal article
container_title Journal of Materials Science
container_volume 55
container_issue 6
container_start_page 2291
publishDate 2020
institution Swansea University
issn 0022-2461
1573-4803
doi_str_mv 10.1007/s10853-019-04162-8
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.
published_date 2020-02-01T04:52:54Z
_version_ 1836505759452495872
score 11.3793955