Journal article 1736 views 359 downloads
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
Journal of Materials Science, Volume: 55, Pages: 2291 - 2302
Swansea University Authors: Christopher Phillips , Tom Dunlop , Serena Margadonna , Davide Deganello
-
PDF | Version of Record
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
Download (2.07MB)
DOI (Published version): 10.1007/s10853-019-04162-8
Abstract
In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (...
Published in: | Journal of Materials Science |
---|---|
ISSN: | 0022-2461 1573-4803 |
Published: |
Springer Science and Business Media LLC
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52708 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-11-12T13:17:29Z |
---|---|
last_indexed |
2021-12-02T04:07:47Z |
id |
cronfa52708 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-12-01T13:33:40.8261230</datestamp><bib-version>v2</bib-version><id>52708</id><entry>2019-11-12</entry><title>Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity</title><swanseaauthors><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e31904a10b1b1240b98ab52d9977dfbe</sid><ORCID>0000-0002-6996-6562</ORCID><firstname>Serena</firstname><surname>Margadonna</surname><name>Serena Margadonna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-12</date><deptcode>CHEG</deptcode><abstract>In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.</abstract><type>Journal Article</type><journal>Journal of Materials Science</journal><volume>55</volume><journalNumber/><paginationStart>2291</paginationStart><paginationEnd>2302</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-2461</issnPrint><issnElectronic>1573-4803</issnElectronic><keywords/><publishedDay>11</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-11</publishedDate><doi>10.1007/s10853-019-04162-8</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-12-01T13:33:40.8261230</lastEdited><Created>2019-11-12T09:48:12.5843885</Created><path><level id="1">Professional Services</level><level id="2">ISS - Uncategorised</level></path><authors><author><firstname>A.</firstname><surname>Jalalian-Khakshour</surname><order>1</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>2</order></author><author><firstname>L.</firstname><surname>Jackson</surname><order>3</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>4</order></author><author><firstname>Serena</firstname><surname>Margadonna</surname><orcid>0000-0002-6996-6562</orcid><order>5</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>6</order></author></authors><documents><document><filename>52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf</filename><originalFilename>Jalalian-Khakshour2019.pdf</originalFilename><uploaded>2019-11-12T09:53:30.3217556</uploaded><type>Output</type><contentLength>2170943</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-11-12T00:00:00.0000000</embargoDate><documentNotes>This article is distributed under the terms of the Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/ licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-12-01T13:33:40.8261230 v2 52708 2019-11-12 Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false e31904a10b1b1240b98ab52d9977dfbe 0000-0002-6996-6562 Serena Margadonna Serena Margadonna true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false 2019-11-12 CHEG In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process. Journal Article Journal of Materials Science 55 2291 2302 Springer Science and Business Media LLC 0022-2461 1573-4803 11 11 2019 2019-11-11 10.1007/s10853-019-04162-8 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2021-12-01T13:33:40.8261230 2019-11-12T09:48:12.5843885 Professional Services ISS - Uncategorised A. Jalalian-Khakshour 1 Christopher Phillips 0000-0001-8011-710X 2 L. Jackson 3 Tom Dunlop 0000-0002-5851-8713 4 Serena Margadonna 0000-0002-6996-6562 5 Davide Deganello 0000-0001-8341-4177 6 52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf Jalalian-Khakshour2019.pdf 2019-11-12T09:53:30.3217556 Output 2170943 application/pdf Version of Record true 2019-11-12T00:00:00.0000000 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/ licenses/by/4.0/ |
title |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
spellingShingle |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity Christopher Phillips Tom Dunlop Serena Margadonna Davide Deganello |
title_short |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
title_full |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
title_fullStr |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
title_full_unstemmed |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
title_sort |
Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity |
author_id_str_mv |
cc734f776f10b3fb9b43816c9f617bb5 809395460ab1e6b53a906b136d919c41 e31904a10b1b1240b98ab52d9977dfbe ea38a0040bdfd3875506189e3629b32a |
author_id_fullname_str_mv |
cc734f776f10b3fb9b43816c9f617bb5_***_Christopher Phillips 809395460ab1e6b53a906b136d919c41_***_Tom Dunlop e31904a10b1b1240b98ab52d9977dfbe_***_Serena Margadonna ea38a0040bdfd3875506189e3629b32a_***_Davide Deganello |
author |
Christopher Phillips Tom Dunlop Serena Margadonna Davide Deganello |
author2 |
A. Jalalian-Khakshour Christopher Phillips L. Jackson Tom Dunlop Serena Margadonna Davide Deganello |
format |
Journal article |
container_title |
Journal of Materials Science |
container_volume |
55 |
container_start_page |
2291 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0022-2461 1573-4803 |
doi_str_mv |
10.1007/s10853-019-04162-8 |
publisher |
Springer Science and Business Media LLC |
college_str |
Professional Services |
hierarchytype |
|
hierarchy_top_id |
professionalservices |
hierarchy_top_title |
Professional Services |
hierarchy_parent_id |
professionalservices |
hierarchy_parent_title |
Professional Services |
department_str |
ISS - Uncategorised{{{_:::_}}}Professional Services{{{_:::_}}}ISS - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process. |
published_date |
2019-11-11T04:05:14Z |
_version_ |
1763753396301463552 |
score |
11.036334 |