No Cover Image

Journal article 726 views 450 downloads

Parallel Implementation of Particle Swarm Optimization on FPGA

Alexandre L. X. Da Costa, Caroline A. D. Silva, Matheus Torquato Orcid Logo, Marcelo A. C. Fernandes

IEEE Transactions on Circuits and Systems II: Express Briefs, Volume: 66, Issue: 11, Pages: 1875 - 1879

Swansea University Author: Matheus Torquato Orcid Logo

Abstract

This brief proposes a parallel implementation, with fixed point, of the particle swarm optimization (PSO) algorithm on field-programmable gate array (FPGA). Results associated with the processing time and area occupancy on FPGA for several numbers of particles and dimensions were analyzed. Studies c...

Full description

Published in: IEEE Transactions on Circuits and Systems II: Express Briefs
ISSN: 1549-7747 1558-3791
Published: Institute of Electrical and Electronics Engineers (IEEE) 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52618
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-10-31T13:18:31Z
last_indexed 2023-02-23T04:04:39Z
id cronfa52618
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-02-22T15:52:05.8083145</datestamp><bib-version>v2</bib-version><id>52618</id><entry>2019-10-31</entry><title>Parallel Implementation of Particle Swarm Optimization on FPGA</title><swanseaauthors><author><sid>7a053c668886b4642286baed36fdba90</sid><ORCID>0000-0001-6356-3538</ORCID><firstname>Matheus</firstname><surname>Torquato</surname><name>Matheus Torquato</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-31</date><deptcode>SCS</deptcode><abstract>This brief proposes a parallel implementation, with fixed point, of the particle swarm optimization (PSO) algorithm on field-programmable gate array (FPGA). Results associated with the processing time and area occupancy on FPGA for several numbers of particles and dimensions were analyzed. Studies concerning the accuracy of the PSO response for the optimization problem using the Rastrigin function were also analyzed for the hardware implementation. The project was developed on the Virtex-6 xc6vcx240t 1ff1156 FPGA.</abstract><type>Journal Article</type><journal>IEEE Transactions on Circuits and Systems II: Express Briefs</journal><volume>66</volume><journalNumber>11</journalNumber><paginationStart>1875</paginationStart><paginationEnd>1879</paginationEnd><publisher>Institute of Electrical and Electronics Engineers (IEEE)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1549-7747</issnPrint><issnElectronic>1558-3791</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-01</publishedDate><doi>10.1109/tcsii.2019.2895343</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-02-22T15:52:05.8083145</lastEdited><Created>2019-10-31T11:22:50.8753281</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Alexandre L. X. Da</firstname><surname>Costa</surname><order>1</order></author><author><firstname>Caroline A. D.</firstname><surname>Silva</surname><order>2</order></author><author><firstname>Matheus</firstname><surname>Torquato</surname><orcid>0000-0001-6356-3538</orcid><order>3</order></author><author><firstname>Marcelo A. C.</firstname><surname>Fernandes</surname><order>4</order></author></authors><documents><document><filename>52618__15758__2b7c86b92a784cb2934a6cc6b191183f.pdf</filename><originalFilename>decosta2019.pdf</originalFilename><uploaded>2019-10-31T11:26:54.2163500</uploaded><type>Output</type><contentLength>929388</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-31T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2023-02-22T15:52:05.8083145 v2 52618 2019-10-31 Parallel Implementation of Particle Swarm Optimization on FPGA 7a053c668886b4642286baed36fdba90 0000-0001-6356-3538 Matheus Torquato Matheus Torquato true false 2019-10-31 SCS This brief proposes a parallel implementation, with fixed point, of the particle swarm optimization (PSO) algorithm on field-programmable gate array (FPGA). Results associated with the processing time and area occupancy on FPGA for several numbers of particles and dimensions were analyzed. Studies concerning the accuracy of the PSO response for the optimization problem using the Rastrigin function were also analyzed for the hardware implementation. The project was developed on the Virtex-6 xc6vcx240t 1ff1156 FPGA. Journal Article IEEE Transactions on Circuits and Systems II: Express Briefs 66 11 1875 1879 Institute of Electrical and Electronics Engineers (IEEE) 1549-7747 1558-3791 1 11 2019 2019-11-01 10.1109/tcsii.2019.2895343 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2023-02-22T15:52:05.8083145 2019-10-31T11:22:50.8753281 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Alexandre L. X. Da Costa 1 Caroline A. D. Silva 2 Matheus Torquato 0000-0001-6356-3538 3 Marcelo A. C. Fernandes 4 52618__15758__2b7c86b92a784cb2934a6cc6b191183f.pdf decosta2019.pdf 2019-10-31T11:26:54.2163500 Output 929388 application/pdf Accepted Manuscript true 2019-10-31T00:00:00.0000000 true
title Parallel Implementation of Particle Swarm Optimization on FPGA
spellingShingle Parallel Implementation of Particle Swarm Optimization on FPGA
Matheus Torquato
title_short Parallel Implementation of Particle Swarm Optimization on FPGA
title_full Parallel Implementation of Particle Swarm Optimization on FPGA
title_fullStr Parallel Implementation of Particle Swarm Optimization on FPGA
title_full_unstemmed Parallel Implementation of Particle Swarm Optimization on FPGA
title_sort Parallel Implementation of Particle Swarm Optimization on FPGA
author_id_str_mv 7a053c668886b4642286baed36fdba90
author_id_fullname_str_mv 7a053c668886b4642286baed36fdba90_***_Matheus Torquato
author Matheus Torquato
author2 Alexandre L. X. Da Costa
Caroline A. D. Silva
Matheus Torquato
Marcelo A. C. Fernandes
format Journal article
container_title IEEE Transactions on Circuits and Systems II: Express Briefs
container_volume 66
container_issue 11
container_start_page 1875
publishDate 2019
institution Swansea University
issn 1549-7747
1558-3791
doi_str_mv 10.1109/tcsii.2019.2895343
publisher Institute of Electrical and Electronics Engineers (IEEE)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 1
active_str 0
description This brief proposes a parallel implementation, with fixed point, of the particle swarm optimization (PSO) algorithm on field-programmable gate array (FPGA). Results associated with the processing time and area occupancy on FPGA for several numbers of particles and dimensions were analyzed. Studies concerning the accuracy of the PSO response for the optimization problem using the Rastrigin function were also analyzed for the hardware implementation. The project was developed on the Virtex-6 xc6vcx240t 1ff1156 FPGA.
published_date 2019-11-01T04:05:05Z
_version_ 1763753386871619584
score 11.037319