Journal article 683 views 507 downloads
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving
Applied Ergonomics, Volume: 63, Pages: 53 - 61
Swansea University Author: Leigh Clark
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-commercial No Derivatives license (CC-BY-NC-ND).
Download (286.37KB)
DOI (Published version): 10.1016/j.apergo.2017.04.003
Abstract
Given the proliferation of ‘intelligent’ and ‘socially-aware’ digital assistants embodying everyday mobile technology – and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices – it appear...
Published in: | Applied Ergonomics |
---|---|
ISSN: | 0003-6870 |
Published: |
Elsevier BV
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52486 |
first_indexed |
2019-10-17T14:22:42Z |
---|---|
last_indexed |
2021-01-29T04:15:15Z |
id |
cronfa52486 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-28T13:23:18.4383352</datestamp><bib-version>v2</bib-version><id>52486</id><entry>2019-10-17</entry><title>Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving</title><swanseaauthors><author><sid>004ef41b90854a57a498549a462f13a0</sid><ORCID>0000-0002-9237-1057</ORCID><firstname>Leigh</firstname><surname>Clark</surname><name>Leigh Clark</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-17</date><deptcode>MACS</deptcode><abstract>Given the proliferation of ‘intelligent’ and ‘socially-aware’ digital assistants embodying everyday mobile technology – and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices – it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis – formulating responses; turn-taking; back-channelling, fillers and hesitation; vague language; mitigating requests and politeness and praise. The results can be used to inform the design of future in-vehicle natural language systems, in particular to help manage the tension between designing for an engaging dialogue (important for technology acceptance) and designing for an effective dialogue (important to minimise distraction in a driving context).</abstract><type>Journal Article</type><journal>Applied Ergonomics</journal><volume>63</volume><journalNumber/><paginationStart>53</paginationStart><paginationEnd>61</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0003-6870</issnPrint><issnElectronic/><keywords>Natural language interface, Digital assistant, Social AIs, DrivingSimulation, Wizard-of-Oz</keywords><publishedDay>30</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-09-30</publishedDate><doi>10.1016/j.apergo.2017.04.003</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T13:23:18.4383352</lastEdited><Created>2019-10-17T13:51:44.7181723</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>David R.</firstname><surname>Large</surname><order>1</order></author><author><firstname>Leigh</firstname><surname>Clark</surname><orcid>0000-0002-9237-1057</orcid><order>2</order></author><author><firstname>Annie</firstname><surname>Quandt</surname><order>3</order></author><author><firstname>Gary</firstname><surname>Burnett</surname><order>4</order></author><author><firstname>Lee</firstname><surname>Skrypchuk</surname><order>5</order></author></authors><documents><document><filename>52486__15657__f1d3e179caed43b7af869df4ca075297.pdf</filename><originalFilename>JERG-D-16-00728R2.20Large.pdf</originalFilename><uploaded>2019-10-17T14:05:36.2470000</uploaded><type>Output</type><contentLength>293243</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-17T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-commercial No Derivatives license (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/2.5/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-28T13:23:18.4383352 v2 52486 2019-10-17 Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving 004ef41b90854a57a498549a462f13a0 0000-0002-9237-1057 Leigh Clark Leigh Clark true false 2019-10-17 MACS Given the proliferation of ‘intelligent’ and ‘socially-aware’ digital assistants embodying everyday mobile technology – and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices – it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis – formulating responses; turn-taking; back-channelling, fillers and hesitation; vague language; mitigating requests and politeness and praise. The results can be used to inform the design of future in-vehicle natural language systems, in particular to help manage the tension between designing for an engaging dialogue (important for technology acceptance) and designing for an effective dialogue (important to minimise distraction in a driving context). Journal Article Applied Ergonomics 63 53 61 Elsevier BV 0003-6870 Natural language interface, Digital assistant, Social AIs, DrivingSimulation, Wizard-of-Oz 30 9 2017 2017-09-30 10.1016/j.apergo.2017.04.003 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-01-28T13:23:18.4383352 2019-10-17T13:51:44.7181723 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science David R. Large 1 Leigh Clark 0000-0002-9237-1057 2 Annie Quandt 3 Gary Burnett 4 Lee Skrypchuk 5 52486__15657__f1d3e179caed43b7af869df4ca075297.pdf JERG-D-16-00728R2.20Large.pdf 2019-10-17T14:05:36.2470000 Output 293243 application/pdf Accepted Manuscript true 2019-10-17T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-commercial No Derivatives license (CC-BY-NC-ND). true eng https://creativecommons.org/licenses/by-nc-nd/2.5/ |
title |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
spellingShingle |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving Leigh Clark |
title_short |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
title_full |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
title_fullStr |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
title_full_unstemmed |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
title_sort |
Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving |
author_id_str_mv |
004ef41b90854a57a498549a462f13a0 |
author_id_fullname_str_mv |
004ef41b90854a57a498549a462f13a0_***_Leigh Clark |
author |
Leigh Clark |
author2 |
David R. Large Leigh Clark Annie Quandt Gary Burnett Lee Skrypchuk |
format |
Journal article |
container_title |
Applied Ergonomics |
container_volume |
63 |
container_start_page |
53 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0003-6870 |
doi_str_mv |
10.1016/j.apergo.2017.04.003 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
Given the proliferation of ‘intelligent’ and ‘socially-aware’ digital assistants embodying everyday mobile technology – and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices – it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis – formulating responses; turn-taking; back-channelling, fillers and hesitation; vague language; mitigating requests and politeness and praise. The results can be used to inform the design of future in-vehicle natural language systems, in particular to help manage the tension between designing for an engaging dialogue (important for technology acceptance) and designing for an effective dialogue (important to minimise distraction in a driving context). |
published_date |
2017-09-30T07:49:44Z |
_version_ |
1821390965971091456 |
score |
11.04748 |