No Cover Image

Journal article 917 views 165 downloads

GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS

Feng-yu Wang

The Quarterly Journal of Mathematics

Swansea University Author: Feng-yu Wang

Check full text

DOI (Published version): 10.1093/qmathj/haz050

Published in: The Quarterly Journal of Mathematics
ISSN: 0033-5606 1464-3847
Published: Oxford University Press (OUP) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52413
first_indexed 2019-10-12T14:22:36Z
last_indexed 2019-10-17T14:22:32Z
id cronfa52413
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-10-17T12:18:57.0373885</datestamp><bib-version>v2</bib-version><id>52413</id><entry>2019-10-12</entry><title>GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-12</date><abstract/><type>Journal Article</type><journal>The Quarterly Journal of Mathematics</journal><publisher>Oxford University Press (OUP)</publisher><issnPrint>0033-5606</issnPrint><issnElectronic>1464-3847</issnElectronic><keywords/><publishedDay>10</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-10</publishedDate><doi>10.1093/qmathj/haz050</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-10-17T12:18:57.0373885</lastEdited><Created>2019-10-12T09:57:48.3774337</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author></authors><documents><document><filename>52413__15569__ba601043cc334ac8b63bad2e964e311a.pdf</filename><originalFilename>17c.pdf</originalFilename><uploaded>2019-10-12T09:58:39.6630000</uploaded><type>Output</type><contentLength>236186</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-10T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-10-17T12:18:57.0373885 v2 52413 2019-10-12 GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2019-10-12 Journal Article The Quarterly Journal of Mathematics Oxford University Press (OUP) 0033-5606 1464-3847 10 2 2020 2020-02-10 10.1093/qmathj/haz050 COLLEGE NANME COLLEGE CODE Swansea University 2019-10-17T12:18:57.0373885 2019-10-12T09:57:48.3774337 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 52413__15569__ba601043cc334ac8b63bad2e964e311a.pdf 17c.pdf 2019-10-12T09:58:39.6630000 Output 236186 application/pdf Accepted Manuscript true 2021-02-10T00:00:00.0000000 true eng
title GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
spellingShingle GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
Feng-yu Wang
title_short GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
title_full GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
title_fullStr GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
title_full_unstemmed GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
title_sort GRADIENT AND HESSIAN ESTIMATES FOR DIRICHLET AND NEUMANN EIGENFUNCTIONS
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Feng-yu Wang
format Journal article
container_title The Quarterly Journal of Mathematics
publishDate 2020
institution Swansea University
issn 0033-5606
1464-3847
doi_str_mv 10.1093/qmathj/haz050
publisher Oxford University Press (OUP)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
published_date 2020-02-10T07:49:32Z
_version_ 1821390953669197824
score 11.047501