Conference Paper/Proceeding/Abstract 1146 views 158 downloads
Shape Correspondence with Isometric and Non-Isometric Deformations
R. M. Dyke,
C Stride,
Y.-K. Lai,
P. L. Rosin,
M. Aubry,
A. Boyarski,
A. M. Bronstein,
M. M. Bronstein,
D. Cremers,
M. Fisher,
T. Groueix,
D. Guo,
V. G. Kim,
R. Kimmel,
Z. Lähner,
K. Li,
O. Litany,
T. Remez,
E. Rodolà,
B. C. Russell,
Y. Sahillioglu,
R. Slossberg,
M. Vestner,
Z. Wu,
J. Yang,
Gary Tam
Eurographics Workshop on 3D Object Retrieval
Swansea University Author: Gary Tam
-
PDF | Version of Record
Download (2.49MB)
DOI (Published version): 10.2312/3dor.20191069
Abstract
The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset...
Published in: | Eurographics Workshop on 3D Object Retrieval |
---|---|
ISBN: | 978-3-03868-077-2 |
ISSN: | 1997-0471 |
Published: |
The Eurographics Association
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52380 |
first_indexed |
2019-10-08T14:22:37Z |
---|---|
last_indexed |
2023-04-15T03:04:15Z |
id |
cronfa52380 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-04-14T15:27:58.9024688</datestamp><bib-version>v2</bib-version><id>52380</id><entry>2019-10-08</entry><title>Shape Correspondence with Isometric and Non-Isometric Deformations</title><swanseaauthors><author><sid>e75a68e11a20e5f1da94ee6e28ff5e76</sid><ORCID>0000-0001-7387-5180</ORCID><firstname>Gary</firstname><surname>Tam</surname><name>Gary Tam</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-08</date><deptcode>MACS</deptcode><abstract>The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations (articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of thistiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current stateof-the-art methods perform in different challenging registration andc orrespondence scenarios. We discover that changes in topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of handling non-isometric deformations on shapes that are moderately similar to the training set.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Eurographics Workshop on 3D Object Retrieval</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>The Eurographics Association</publisher><placeOfPublication/><isbnPrint/><isbnElectronic>978-3-03868-077-2</isbnElectronic><issnPrint/><issnElectronic>1997-0471</issnElectronic><keywords/><publishedDay>29</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-04-29</publishedDate><doi>10.2312/3dor.20191069</doi><url>https://diglib.eg.org/handle/10.2312/3dor20191069</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work has
been supported by the Cardiff University EPSRC Doctoral Training Partnership [grant ref. EP/N509449/1], and by the Scientific
and Technological Research Council of Turkey (TÜB˙ITAK) [grant
ref. EEEAG-115E471].</funders><projectreference/><lastEdited>2023-04-14T15:27:58.9024688</lastEdited><Created>2019-10-08T12:01:09.1164537</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>R. M.</firstname><surname>Dyke</surname><order>1</order></author><author><firstname>C</firstname><surname>Stride</surname><order>2</order></author><author><firstname>Y.-K.</firstname><surname>Lai</surname><order>3</order></author><author><firstname>P. L.</firstname><surname>Rosin</surname><order>4</order></author><author><firstname>M.</firstname><surname>Aubry</surname><order>5</order></author><author><firstname>A.</firstname><surname>Boyarski</surname><order>6</order></author><author><firstname>A. M.</firstname><surname>Bronstein</surname><order>7</order></author><author><firstname>M. M.</firstname><surname>Bronstein</surname><order>8</order></author><author><firstname>D.</firstname><surname>Cremers</surname><order>9</order></author><author><firstname>M.</firstname><surname>Fisher</surname><order>10</order></author><author><firstname>T.</firstname><surname>Groueix</surname><order>11</order></author><author><firstname>D.</firstname><surname>Guo</surname><order>12</order></author><author><firstname>V. G.</firstname><surname>Kim</surname><order>13</order></author><author><firstname>R.</firstname><surname>Kimmel</surname><order>14</order></author><author><firstname>Z.</firstname><surname>Lähner</surname><order>15</order></author><author><firstname>K.</firstname><surname>Li</surname><order>16</order></author><author><firstname>O.</firstname><surname>Litany</surname><order>17</order></author><author><firstname>T.</firstname><surname>Remez</surname><order>18</order></author><author><firstname>E.</firstname><surname>Rodolà</surname><order>19</order></author><author><firstname>B. C.</firstname><surname>Russell</surname><order>20</order></author><author><firstname>Y.</firstname><surname>Sahillioglu</surname><order>21</order></author><author><firstname>R.</firstname><surname>Slossberg</surname><order>22</order></author><author><firstname>M.</firstname><surname>Vestner</surname><order>23</order></author><author><firstname>Z.</firstname><surname>Wu</surname><order>24</order></author><author><firstname>J.</firstname><surname>Yang</surname><order>25</order></author><author><firstname>Gary</firstname><surname>Tam</surname><orcid>0000-0001-7387-5180</orcid><order>26</order></author></authors><documents><document><filename>52380__16280__2114b2a432d642c6bf020ca6d6c46f49.pdf</filename><originalFilename>52380.pdf</originalFilename><uploaded>2020-01-13T15:51:34.2495016</uploaded><type>Output</type><contentLength>2614122</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://www.eg.org/wp/eurographics-publications/guidelines/#licensing</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-04-14T15:27:58.9024688 v2 52380 2019-10-08 Shape Correspondence with Isometric and Non-Isometric Deformations e75a68e11a20e5f1da94ee6e28ff5e76 0000-0001-7387-5180 Gary Tam Gary Tam true false 2019-10-08 MACS The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations (articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of thistiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current stateof-the-art methods perform in different challenging registration andc orrespondence scenarios. We discover that changes in topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of handling non-isometric deformations on shapes that are moderately similar to the training set. Conference Paper/Proceeding/Abstract Eurographics Workshop on 3D Object Retrieval The Eurographics Association 978-3-03868-077-2 1997-0471 29 4 2019 2019-04-29 10.2312/3dor.20191069 https://diglib.eg.org/handle/10.2312/3dor20191069 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University This work has been supported by the Cardiff University EPSRC Doctoral Training Partnership [grant ref. EP/N509449/1], and by the Scientific and Technological Research Council of Turkey (TÜB˙ITAK) [grant ref. EEEAG-115E471]. 2023-04-14T15:27:58.9024688 2019-10-08T12:01:09.1164537 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science R. M. Dyke 1 C Stride 2 Y.-K. Lai 3 P. L. Rosin 4 M. Aubry 5 A. Boyarski 6 A. M. Bronstein 7 M. M. Bronstein 8 D. Cremers 9 M. Fisher 10 T. Groueix 11 D. Guo 12 V. G. Kim 13 R. Kimmel 14 Z. Lähner 15 K. Li 16 O. Litany 17 T. Remez 18 E. Rodolà 19 B. C. Russell 20 Y. Sahillioglu 21 R. Slossberg 22 M. Vestner 23 Z. Wu 24 J. Yang 25 Gary Tam 0000-0001-7387-5180 26 52380__16280__2114b2a432d642c6bf020ca6d6c46f49.pdf 52380.pdf 2020-01-13T15:51:34.2495016 Output 2614122 application/pdf Version of Record true true eng https://www.eg.org/wp/eurographics-publications/guidelines/#licensing |
title |
Shape Correspondence with Isometric and Non-Isometric Deformations |
spellingShingle |
Shape Correspondence with Isometric and Non-Isometric Deformations Gary Tam |
title_short |
Shape Correspondence with Isometric and Non-Isometric Deformations |
title_full |
Shape Correspondence with Isometric and Non-Isometric Deformations |
title_fullStr |
Shape Correspondence with Isometric and Non-Isometric Deformations |
title_full_unstemmed |
Shape Correspondence with Isometric and Non-Isometric Deformations |
title_sort |
Shape Correspondence with Isometric and Non-Isometric Deformations |
author_id_str_mv |
e75a68e11a20e5f1da94ee6e28ff5e76 |
author_id_fullname_str_mv |
e75a68e11a20e5f1da94ee6e28ff5e76_***_Gary Tam |
author |
Gary Tam |
author2 |
R. M. Dyke C Stride Y.-K. Lai P. L. Rosin M. Aubry A. Boyarski A. M. Bronstein M. M. Bronstein D. Cremers M. Fisher T. Groueix D. Guo V. G. Kim R. Kimmel Z. Lähner K. Li O. Litany T. Remez E. Rodolà B. C. Russell Y. Sahillioglu R. Slossberg M. Vestner Z. Wu J. Yang Gary Tam |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Eurographics Workshop on 3D Object Retrieval |
publishDate |
2019 |
institution |
Swansea University |
isbn |
978-3-03868-077-2 |
issn |
1997-0471 |
doi_str_mv |
10.2312/3dor.20191069 |
publisher |
The Eurographics Association |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
https://diglib.eg.org/handle/10.2312/3dor20191069 |
document_store_str |
1 |
active_str |
0 |
description |
The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations (articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of thistiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current stateof-the-art methods perform in different challenging registration andc orrespondence scenarios. We discover that changes in topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of handling non-isometric deformations on shapes that are moderately similar to the training set. |
published_date |
2019-04-29T19:49:04Z |
_version_ |
1821345625589940224 |
score |
11.04748 |