Journal article 1270 views 356 downloads
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks
Alma Rahat,
Richard M. Everson,
Jonathan E. Fieldsend
Evolutionary Computation, Volume: 23, Issue: 3, Pages: 481 - 507
Swansea University Author: Alma Rahat
-
PDF | Accepted Manuscript
Download (1.07MB)
DOI (Published version): 10.1162/evco_a_00151
Abstract
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks
| Published in: | Evolutionary Computation |
|---|---|
| ISSN: | 1063-6560 1530-9304 |
| Published: |
MIT Press - Journals
2015
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa52262 |
| first_indexed |
2019-10-02T20:21:35Z |
|---|---|
| last_indexed |
2023-01-11T14:29:20Z |
| id |
cronfa52262 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-01T15:37:13.8703291</datestamp><bib-version>v2</bib-version><id>52262</id><entry>2019-10-02</entry><title>Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks</title><swanseaauthors><author><sid>6206f027aca1e3a5ff6b8cd224248bc2</sid><firstname>Alma</firstname><surname>Rahat</surname><name>Alma Rahat</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-02</date><abstract/><type>Journal Article</type><journal>Evolutionary Computation</journal><volume>23</volume><journalNumber>3</journalNumber><paginationStart>481</paginationStart><paginationEnd>507</paginationEnd><publisher>MIT Press - Journals</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1063-6560</issnPrint><issnElectronic>1530-9304</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-09-01</publishedDate><doi>10.1162/evco_a_00151</doi><url>http://dx.doi.org/10.1162/evco_a_00151</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-11-01T15:37:13.8703291</lastEdited><Created>2019-10-02T15:17:06.8001047</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Alma</firstname><surname>Rahat</surname><order>1</order></author><author><firstname>Richard M.</firstname><surname>Everson</surname><order>2</order></author><author><firstname>Jonathan E.</firstname><surname>Fieldsend</surname><order>3</order></author></authors><documents><document><filename>0052262-03102019215049.pdf</filename><originalFilename>p1234.pdf</originalFilename><uploaded>2019-10-03T21:50:49.5900000</uploaded><type>Output</type><contentLength>1013523</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-03T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
| spelling |
2022-11-01T15:37:13.8703291 v2 52262 2019-10-02 Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks 6206f027aca1e3a5ff6b8cd224248bc2 Alma Rahat Alma Rahat true false 2019-10-02 Journal Article Evolutionary Computation 23 3 481 507 MIT Press - Journals 1063-6560 1530-9304 1 9 2015 2015-09-01 10.1162/evco_a_00151 http://dx.doi.org/10.1162/evco_a_00151 COLLEGE NANME COLLEGE CODE Swansea University 2022-11-01T15:37:13.8703291 2019-10-02T15:17:06.8001047 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Alma Rahat 1 Richard M. Everson 2 Jonathan E. Fieldsend 3 0052262-03102019215049.pdf p1234.pdf 2019-10-03T21:50:49.5900000 Output 1013523 application/pdf Accepted Manuscript true 2019-10-03T00:00:00.0000000 false eng |
| title |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| spellingShingle |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks Alma Rahat |
| title_short |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| title_full |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| title_fullStr |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| title_full_unstemmed |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| title_sort |
Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks |
| author_id_str_mv |
6206f027aca1e3a5ff6b8cd224248bc2 |
| author_id_fullname_str_mv |
6206f027aca1e3a5ff6b8cd224248bc2_***_Alma Rahat |
| author |
Alma Rahat |
| author2 |
Alma Rahat Richard M. Everson Jonathan E. Fieldsend |
| format |
Journal article |
| container_title |
Evolutionary Computation |
| container_volume |
23 |
| container_issue |
3 |
| container_start_page |
481 |
| publishDate |
2015 |
| institution |
Swansea University |
| issn |
1063-6560 1530-9304 |
| doi_str_mv |
10.1162/evco_a_00151 |
| publisher |
MIT Press - Journals |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| url |
http://dx.doi.org/10.1162/evco_a_00151 |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2015-09-01T04:42:51Z |
| _version_ |
1856983816380350464 |
| score |
11.096068 |

