Journal article 827 views
A depth-averaged two-phase model for debris flows over erodible beds
Earth Surface Processes and Landforms, Volume: 43, Issue: 4, Pages: 817 - 839
Swansea University Author: Ji Li
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1002/esp.4283
Abstract
Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth-averaged two-phase model is proposed for debris flows over erodible beds. Compared to previous depth-averaged two-phase models, the present model features a physical step forward by explicitly inco...
Published in: | Earth Surface Processes and Landforms |
---|---|
ISSN: | 0197-9337 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa51802 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-09-12T14:49:04Z |
---|---|
last_indexed |
2020-12-18T04:13:23Z |
id |
cronfa51802 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-17T10:40:31.1165861</datestamp><bib-version>v2</bib-version><id>51802</id><entry>2019-09-12</entry><title>A depth-averaged two-phase model for debris flows over erodible beds</title><swanseaauthors><author><sid>4123c4ddbcd6e77f580974c661461c7c</sid><ORCID>0000-0003-4328-3197</ORCID><firstname>Ji</firstname><surname>Li</surname><name>Ji Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-09-12</date><deptcode>CIVL</deptcode><abstract>Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth-averaged two-phase model is proposed for debris flows over erodible beds. Compared to previous depth-averaged two-phase models, the present model features a physical step forward by explicitly incorporating the mass exchange between the flow and the bed. A widely used closure model in fluvial hydraulics is employed to estimate the mass exchange between the debris flow and the bed, and an existing relationship for bed entrainment rate is introduced for comparison. Also, two distinct closure models for the bed shear stresses are evaluated. One uses the Coulomb friction law and Manning’s equation to determine the solid and fluid resistances respectively, while the other employs an analytically derived formula for the solid phase and the mixing length approach for the fluid phase. A well-balanced numerical algorithm is applied to solve the governing equations of the model. The present model is first shown to reproduce average sediment concentrations in steady and uniform debris flows over saturated bed as compared to an existing formula underpinned by experimental datasets. Then, it is demonstrated to perform rather well as compared to the full set of USGS large-scale experimental debris flows over erodible beds, in producing debris flow depth, front location and bed deformation. The effects of initial conditions on debris flow mass and momentum gain are resolved by the present model, which explicitly demonstrates the roles of the wetness, porosity and volume of bed sediments in affecting the flow. By virtue of extended modeling cases, the present model produces debris flow efficiency that, as revealed by existing observations and empirical relations, increases with initial volume, which is enhanced by mass gain from the bed.</abstract><type>Journal Article</type><journal>Earth Surface Processes and Landforms</journal><volume>43</volume><journalNumber>4</journalNumber><paginationStart>817</paginationStart><paginationEnd>839</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0197-9337</issnPrint><issnElectronic/><keywords>debris flow; erodible bed; mass exchange; two-phase model; debris flow efficiency</keywords><publishedDay>30</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-03-30</publishedDate><doi>10.1002/esp.4283</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-17T10:40:31.1165861</lastEdited><Created>2019-09-12T04:27:43.4859122</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Ji</firstname><surname>Li</surname><orcid>0000-0003-4328-3197</orcid><order>1</order></author><author><firstname>Zhixian</firstname><surname>Cao</surname><order>2</order></author><author><firstname>Kaiheng</firstname><surname>Hu</surname><order>3</order></author><author><firstname>Gareth</firstname><surname>Pender</surname><order>4</order></author><author><firstname>Qingquan</firstname><surname>Liu</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2020-12-17T10:40:31.1165861 v2 51802 2019-09-12 A depth-averaged two-phase model for debris flows over erodible beds 4123c4ddbcd6e77f580974c661461c7c 0000-0003-4328-3197 Ji Li Ji Li true false 2019-09-12 CIVL Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth-averaged two-phase model is proposed for debris flows over erodible beds. Compared to previous depth-averaged two-phase models, the present model features a physical step forward by explicitly incorporating the mass exchange between the flow and the bed. A widely used closure model in fluvial hydraulics is employed to estimate the mass exchange between the debris flow and the bed, and an existing relationship for bed entrainment rate is introduced for comparison. Also, two distinct closure models for the bed shear stresses are evaluated. One uses the Coulomb friction law and Manning’s equation to determine the solid and fluid resistances respectively, while the other employs an analytically derived formula for the solid phase and the mixing length approach for the fluid phase. A well-balanced numerical algorithm is applied to solve the governing equations of the model. The present model is first shown to reproduce average sediment concentrations in steady and uniform debris flows over saturated bed as compared to an existing formula underpinned by experimental datasets. Then, it is demonstrated to perform rather well as compared to the full set of USGS large-scale experimental debris flows over erodible beds, in producing debris flow depth, front location and bed deformation. The effects of initial conditions on debris flow mass and momentum gain are resolved by the present model, which explicitly demonstrates the roles of the wetness, porosity and volume of bed sediments in affecting the flow. By virtue of extended modeling cases, the present model produces debris flow efficiency that, as revealed by existing observations and empirical relations, increases with initial volume, which is enhanced by mass gain from the bed. Journal Article Earth Surface Processes and Landforms 43 4 817 839 0197-9337 debris flow; erodible bed; mass exchange; two-phase model; debris flow efficiency 30 3 2018 2018-03-30 10.1002/esp.4283 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2020-12-17T10:40:31.1165861 2019-09-12T04:27:43.4859122 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Ji Li 0000-0003-4328-3197 1 Zhixian Cao 2 Kaiheng Hu 3 Gareth Pender 4 Qingquan Liu 5 |
title |
A depth-averaged two-phase model for debris flows over erodible beds |
spellingShingle |
A depth-averaged two-phase model for debris flows over erodible beds Ji Li |
title_short |
A depth-averaged two-phase model for debris flows over erodible beds |
title_full |
A depth-averaged two-phase model for debris flows over erodible beds |
title_fullStr |
A depth-averaged two-phase model for debris flows over erodible beds |
title_full_unstemmed |
A depth-averaged two-phase model for debris flows over erodible beds |
title_sort |
A depth-averaged two-phase model for debris flows over erodible beds |
author_id_str_mv |
4123c4ddbcd6e77f580974c661461c7c |
author_id_fullname_str_mv |
4123c4ddbcd6e77f580974c661461c7c_***_Ji Li |
author |
Ji Li |
author2 |
Ji Li Zhixian Cao Kaiheng Hu Gareth Pender Qingquan Liu |
format |
Journal article |
container_title |
Earth Surface Processes and Landforms |
container_volume |
43 |
container_issue |
4 |
container_start_page |
817 |
publishDate |
2018 |
institution |
Swansea University |
issn |
0197-9337 |
doi_str_mv |
10.1002/esp.4283 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
0 |
active_str |
0 |
description |
Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth-averaged two-phase model is proposed for debris flows over erodible beds. Compared to previous depth-averaged two-phase models, the present model features a physical step forward by explicitly incorporating the mass exchange between the flow and the bed. A widely used closure model in fluvial hydraulics is employed to estimate the mass exchange between the debris flow and the bed, and an existing relationship for bed entrainment rate is introduced for comparison. Also, two distinct closure models for the bed shear stresses are evaluated. One uses the Coulomb friction law and Manning’s equation to determine the solid and fluid resistances respectively, while the other employs an analytically derived formula for the solid phase and the mixing length approach for the fluid phase. A well-balanced numerical algorithm is applied to solve the governing equations of the model. The present model is first shown to reproduce average sediment concentrations in steady and uniform debris flows over saturated bed as compared to an existing formula underpinned by experimental datasets. Then, it is demonstrated to perform rather well as compared to the full set of USGS large-scale experimental debris flows over erodible beds, in producing debris flow depth, front location and bed deformation. The effects of initial conditions on debris flow mass and momentum gain are resolved by the present model, which explicitly demonstrates the roles of the wetness, porosity and volume of bed sediments in affecting the flow. By virtue of extended modeling cases, the present model produces debris flow efficiency that, as revealed by existing observations and empirical relations, increases with initial volume, which is enhanced by mass gain from the bed. |
published_date |
2018-03-30T04:03:48Z |
_version_ |
1763753306629341184 |
score |
11.037603 |