No Cover Image

Journal article 168 views

A domain decomposition method for the non-intrusive reduced order modelling of fluid flow / D. Xiao, F. Fang, C.E. Heaney, I.M. Navon, C.C. Pain, Dunhui Xiao

Computer Methods in Applied Mechanics and Engineering, Volume: 354, Pages: 307 - 330

Swansea University Author: Dunhui Xiao

Full text not available from this repository: check for access using links below.

Abstract

In this paper we present a new domain decomposition non-intrusive reduced order model (DDNIROM) for the Navier–Stokes equations. The computational domain is partitioned into subdomains and a set of local basis functions is constructed in each subdomain using Proper Orthogonal Decomposition (POD). A...

Full description

Published in: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51800
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this paper we present a new domain decomposition non-intrusive reduced order model (DDNIROM) for the Navier–Stokes equations. The computational domain is partitioned into subdomains and a set of local basis functions is constructed in each subdomain using Proper Orthogonal Decomposition (POD). A radial basis function (RBF) method is then used to generate a set of hypersurfaces for each subdomain. Each local hypersurface represents, not only the fluid dynamics over the subdomain to which it belongs, but also the interactions with the surrounding subdomains. This implicit coupling between the subdomains provides the global coupling necessary to enforce incompressibility and is a means of providing boundary conditions for each subdomain.The performance of this DDNIROM is illustrated numerically by three examples: flow past a cylinder, and air flow over 2D and 3D street canyons. The results show that the DDNIROM exhibits good agreement with the high-fidelity full model while the computational cost is reduced by several orders of magnitude. The domain decomposition (DD) method provides the flexibility to choose different numbers of local basis functions for each subdomain depending on the complexity of the flow therein. The fact that the RBF surface representation takes input only from its current subdomain and the surrounding subdomains, means that, crucially, there is a reduction in the dimensionality of the hypersurface when compared with a more traditional, global NIROM. This comes at the cost of having a larger number of hypersurfaces.
Keywords: Domain decomposition, Reduced order modelling, Non-intrusive, Proper orthogonal decomposition
College: College of Engineering
Start Page: 307
End Page: 330