No Cover Image

Journal article 660 views 389 downloads

Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface

Katharina Häckl, Hua Li, Iain Aldous Orcid Logo, Terrence Tsui, Werner Kunz, Andrew P Abbott, Gregory G. Warr, Rob Atkin

The Journal of Physical Chemistry Letters

Swansea University Author: Iain Aldous Orcid Logo

Abstract

Atomic force microscope (AFM) and cyclic voltammetry (CV) are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behaviour in water, sodium dodecyl sulphate (SDS) in DESs only adsorbs as a complete layer...

Full description

Published in: The Journal of Physical Chemistry Letters
ISSN: 1948-7185 1948-7185
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51509
first_indexed 2019-08-22T15:32:44Z
last_indexed 2019-08-22T15:32:44Z
id cronfa51509
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-22T11:22:45.7745246</datestamp><bib-version>v2</bib-version><id>51509</id><entry>2019-08-22</entry><title>Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface</title><swanseaauthors><author><sid>87867d675f1cd66804b1c6c2626cac24</sid><ORCID>0000-0003-4776-9573</ORCID><firstname>Iain</firstname><surname>Aldous</surname><name>Iain Aldous</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-22</date><abstract>Atomic force microscope (AFM) and cyclic voltammetry (CV) are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behaviour in water, sodium dodecyl sulphate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at OCP and positive potentials, and which desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations, and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations, and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure.</abstract><type>Journal Article</type><journal>The Journal of Physical Chemistry Letters</journal><publisher/><issnPrint>1948-7185</issnPrint><issnElectronic>1948-7185</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1021/acs.jpclett.9b01968</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-22T11:22:45.7745246</lastEdited><Created>2019-08-22T11:19:49.3716616</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Katharina</firstname><surname>H&#xE4;ckl</surname><order>1</order></author><author><firstname>Hua</firstname><surname>Li</surname><order>2</order></author><author><firstname>Iain</firstname><surname>Aldous</surname><orcid>0000-0003-4776-9573</orcid><order>3</order></author><author><firstname>Terrence</firstname><surname>Tsui</surname><order>4</order></author><author><firstname>Werner</firstname><surname>Kunz</surname><order>5</order></author><author><firstname>Andrew P</firstname><surname>Abbott</surname><order>6</order></author><author><firstname>Gregory G.</firstname><surname>Warr</surname><order>7</order></author><author><firstname>Rob</firstname><surname>Atkin</surname><order>8</order></author></authors><documents><document><filename>0051509-22082019112219.pdf</filename><originalFilename>hacklSI2019.pdf</originalFilename><uploaded>2019-08-22T11:22:19.8230000</uploaded><type>Output</type><contentLength>510762</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-08-20T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document><document><filename>0051509-22082019112205.pdf</filename><originalFilename>hackl2019.pdf</originalFilename><uploaded>2019-08-22T11:22:05.5730000</uploaded><type>Output</type><contentLength>3117184</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-08-20T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-08-22T11:22:45.7745246 v2 51509 2019-08-22 Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface 87867d675f1cd66804b1c6c2626cac24 0000-0003-4776-9573 Iain Aldous Iain Aldous true false 2019-08-22 Atomic force microscope (AFM) and cyclic voltammetry (CV) are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behaviour in water, sodium dodecyl sulphate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at OCP and positive potentials, and which desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations, and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations, and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure. Journal Article The Journal of Physical Chemistry Letters 1948-7185 1948-7185 31 12 2019 2019-12-31 10.1021/acs.jpclett.9b01968 COLLEGE NANME COLLEGE CODE Swansea University 2019-08-22T11:22:45.7745246 2019-08-22T11:19:49.3716616 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Katharina Häckl 1 Hua Li 2 Iain Aldous 0000-0003-4776-9573 3 Terrence Tsui 4 Werner Kunz 5 Andrew P Abbott 6 Gregory G. Warr 7 Rob Atkin 8 0051509-22082019112219.pdf hacklSI2019.pdf 2019-08-22T11:22:19.8230000 Output 510762 application/pdf Accepted Manuscript true 2020-08-20T00:00:00.0000000 false eng 0051509-22082019112205.pdf hackl2019.pdf 2019-08-22T11:22:05.5730000 Output 3117184 application/pdf Accepted Manuscript true 2020-08-20T00:00:00.0000000 false eng
title Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
spellingShingle Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
Iain Aldous
title_short Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
title_full Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
title_fullStr Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
title_full_unstemmed Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
title_sort Potential Dependence of Surfactant Adsorption at the Graphite Electrode / Deep Eutectic Solvent Interface
author_id_str_mv 87867d675f1cd66804b1c6c2626cac24
author_id_fullname_str_mv 87867d675f1cd66804b1c6c2626cac24_***_Iain Aldous
author Iain Aldous
author2 Katharina Häckl
Hua Li
Iain Aldous
Terrence Tsui
Werner Kunz
Andrew P Abbott
Gregory G. Warr
Rob Atkin
format Journal article
container_title The Journal of Physical Chemistry Letters
publishDate 2019
institution Swansea University
issn 1948-7185
1948-7185
doi_str_mv 10.1021/acs.jpclett.9b01968
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Atomic force microscope (AFM) and cyclic voltammetry (CV) are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behaviour in water, sodium dodecyl sulphate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at OCP and positive potentials, and which desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations, and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations, and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure.
published_date 2019-12-31T19:57:08Z
_version_ 1821436729684393984
score 11.047609