No Cover Image

Journal article 690 views

Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Short‐Circuit Current and High Efficiency >11% in As‐Cast Organic Solar Cells

Qiao He, Munazza Shahid, Jiaying Wu, Xuechen Jiao, Flurin D. Eisner, Thomas Hodsden, Zhuping Fei, Thomas D. Anthopoulos, Christopher R. McNeill, James Durrant Orcid Logo, Martin Heeney

Advanced Functional Materials, Start page: 1904956

Swansea University Author: James Durrant Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1002/adfm.201904956

Abstract

A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a pro...

Full description

Published in: Advanced Functional Materials
ISSN: 1616-301X 1616-3028
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51480
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a promising nonfullerene small molecule acceptor (CDTTIC) is prepared. As‐cast, single‐junction nonfullerene organic solar cells based on PFBDB‐T: CDTTIC blends exhibit very high short‐circuit currents up to 26.2 mA cm−2 in combination with power conversion efficiencies over 11% without any additional processing treatments. The high photocurrent results from the near‐infrared absorption of the CDTTIC acceptor and the well‐intermixed blend morphology of polymer donor PFBDB‐T and CDTTIC. This work demonstrates a useful fused ring extension strategy and promising solar cell results, indicating the great potential of the CDTT derivatives as electron‐rich building blocks for constructing high‐performance small molecule acceptors in organic solar cells.
College: Faculty of Science and Engineering
Start Page: 1904956