Journal article 685 views 120 downloads
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration
Isabella Römer,
Sophie Marie Briffa,
Yadira Arroyo Rojas Dasilva,
Dimitri Hapiuk,
Vanessa Trouillet,
Richard Palmer ,
Eugenia Valsami-Jones
PLOS ONE, Volume: 14, Issue: 6, Start page: e0217483
Swansea University Author: Richard Palmer
-
PDF | Version of Record
Download (2.18MB)
DOI (Published version): 10.1371/journal.pone.0217483
Abstract
The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment...
Published in: | PLOS ONE |
---|---|
ISSN: | 1932-6203 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50973 |
first_indexed |
2019-07-01T14:57:18Z |
---|---|
last_indexed |
2019-07-01T14:57:18Z |
id |
cronfa50973 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-07-01T10:28:32.3554012</datestamp><bib-version>v2</bib-version><id>50973</id><entry>2019-07-01</entry><title>Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration</title><swanseaauthors><author><sid>6ae369618efc7424d9774377536ea519</sid><ORCID>0000-0001-8728-8083</ORCID><firstname>Richard</firstname><surname>Palmer</surname><name>Richard Palmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-07-01</date><deptcode>ACEM</deptcode><abstract>The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods.</abstract><type>Journal Article</type><journal>PLOS ONE</journal><volume>14</volume><journalNumber>6</journalNumber><paginationStart>e0217483</paginationStart><publisher/><issnElectronic>1932-6203</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1371/journal.pone.0217483</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-07-01T10:28:32.3554012</lastEdited><Created>2019-07-01T09:54:03.2572223</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Isabella</firstname><surname>Römer</surname><order>1</order></author><author><firstname>Sophie Marie</firstname><surname>Briffa</surname><order>2</order></author><author><firstname>Yadira</firstname><surname>Arroyo Rojas Dasilva</surname><order>3</order></author><author><firstname>Dimitri</firstname><surname>Hapiuk</surname><order>4</order></author><author><firstname>Vanessa</firstname><surname>Trouillet</surname><order>5</order></author><author><firstname>Richard</firstname><surname>Palmer</surname><orcid>0000-0001-8728-8083</orcid><order>6</order></author><author><firstname>Eugenia</firstname><surname>Valsami-Jones</surname><order>7</order></author></authors><documents><document><filename>0050973-01072019102820.pdf</filename><originalFilename>romer2019.pdf</originalFilename><uploaded>2019-07-01T10:28:20.9500000</uploaded><type>Output</type><contentLength>2349522</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-07-01T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-07-01T10:28:32.3554012 v2 50973 2019-07-01 Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration 6ae369618efc7424d9774377536ea519 0000-0001-8728-8083 Richard Palmer Richard Palmer true false 2019-07-01 ACEM The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods. Journal Article PLOS ONE 14 6 e0217483 1932-6203 31 12 2019 2019-12-31 10.1371/journal.pone.0217483 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2019-07-01T10:28:32.3554012 2019-07-01T09:54:03.2572223 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Isabella Römer 1 Sophie Marie Briffa 2 Yadira Arroyo Rojas Dasilva 3 Dimitri Hapiuk 4 Vanessa Trouillet 5 Richard Palmer 0000-0001-8728-8083 6 Eugenia Valsami-Jones 7 0050973-01072019102820.pdf romer2019.pdf 2019-07-01T10:28:20.9500000 Output 2349522 application/pdf Version of Record true 2019-07-01T00:00:00.0000000 false eng |
title |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
spellingShingle |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration Richard Palmer |
title_short |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
title_full |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
title_fullStr |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
title_full_unstemmed |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
title_sort |
Impact of particle size, oxidation state and capping agent of different cerium dioxide nanoparticles on the phosphate-induced transformations at different pH and concentration |
author_id_str_mv |
6ae369618efc7424d9774377536ea519 |
author_id_fullname_str_mv |
6ae369618efc7424d9774377536ea519_***_Richard Palmer |
author |
Richard Palmer |
author2 |
Isabella Römer Sophie Marie Briffa Yadira Arroyo Rojas Dasilva Dimitri Hapiuk Vanessa Trouillet Richard Palmer Eugenia Valsami-Jones |
format |
Journal article |
container_title |
PLOS ONE |
container_volume |
14 |
container_issue |
6 |
container_start_page |
e0217483 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1932-6203 |
doi_str_mv |
10.1371/journal.pone.0217483 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials’ own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media. We have experimented with the transformation of four different kinds of CeO2 NPs, in order to investigate the effects of nanoparticle size, capping agent (three were uncapped and one was PVP capped) and oxidation state (two consisted mostly of Ce4+ and two were a mix of Ce3+/Ce4+). They were exposed to a reaction solution containing KH2PO4, citric acid and ascorbic acid at pH values of 2.3, 5.5 and 12.3, and concentrations of 1mM and 5mM. The transformations were followed by UV-vis, zeta potential and XRD measurements, which were taken after 7 and 21 days, and by transmission electron microscopy after 21 days. X-ray photoelectron spectroscopy was measured at 5mM concentration after 21 days for some samples. Results show that for pH 5 and 5mM phosphate concentration, CePO4 NPs were formed. Nanoparticles that were mostly Ce4+ did not dissolve at 1mM reagent concentration, and did not produce CePO4 NPs. When PVP was present as a capping agent it proved to be an extra reducing agent, and CePO4 was found under all conditions used. This is the first paper where the transformation of CeO2 NPs in the presence of phosphate has been studied for particles with different size, shapes and capping agents, in a range of different conditions and using many different characterisation methods. |
published_date |
2019-12-31T07:46:10Z |
_version_ |
1821390741638742016 |
score |
11.111051 |