No Cover Image

Journal article 1083 views 179 downloads

Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis

Dmitri Finkelshtein Orcid Logo, Yuri Kondratiev, Eugene Lytvynov Orcid Logo, Maria João Oliveira, Ludwig Streit

Journal of Mathematical Analysis and Applications, Volume: 479, Issue: 1, Pages: 162 - 184

Swansea University Authors: Dmitri Finkelshtein Orcid Logo, Eugene Lytvynov Orcid Logo

  • Finalversionv4.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (382.91KB)

Abstract

For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological...

Full description

Published in: Journal of Mathematical Analysis and Applications
ISSN: 0022-247X
Published: Elsevier BV 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50766
first_indexed 2019-06-08T14:55:17Z
last_indexed 2020-07-20T19:11:34Z
id cronfa50766
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-20T15:46:50.6422210</datestamp><bib-version>v2</bib-version><id>50766</id><entry>2019-06-08</entry><title>Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-08</date><deptcode>MACS</deptcode><abstract>For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha&gt;0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha&gt;1$. The latter result is new even in the one-dimensional case.</abstract><type>Journal Article</type><journal>Journal of Mathematical Analysis and Applications</journal><volume>479</volume><journalNumber>1</journalNumber><paginationStart>162</paginationStart><paginationEnd>184</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0022-247X</issnPrint><keywords>Infinite dimensional holomorphy; Nuclear and co-nuclear spaces; Sequence of polynomials of binomial type; Sheffer operator; Sheffer sequence; Spaces of entire functions</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-01</publishedDate><doi>10.1016/j.jmaa.2019.06.021</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-20T15:46:50.6422210</lastEdited><Created>2019-06-08T10:46:36.3292803</Created><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author><author><firstname>Maria Jo&#xE3;o</firstname><surname>Oliveira</surname><order>4</order></author><author><firstname>Ludwig</firstname><surname>Streit</surname><order>5</order></author></authors><documents><document><filename>0050766-08062019105307.pdf</filename><originalFilename>Finalversionv4.pdf</originalFilename><uploaded>2019-06-08T10:53:07.5670000</uploaded><type>Output</type><contentLength>346890</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-06-10T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-20T15:46:50.6422210 v2 50766 2019-06-08 Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2019-06-08 MACS For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case. Journal Article Journal of Mathematical Analysis and Applications 479 1 162 184 Elsevier BV 0022-247X Infinite dimensional holomorphy; Nuclear and co-nuclear spaces; Sequence of polynomials of binomial type; Sheffer operator; Sheffer sequence; Spaces of entire functions 1 11 2019 2019-11-01 10.1016/j.jmaa.2019.06.021 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-20T15:46:50.6422210 2019-06-08T10:46:36.3292803 Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3 Maria João Oliveira 4 Ludwig Streit 5 0050766-08062019105307.pdf Finalversionv4.pdf 2019-06-08T10:53:07.5670000 Output 346890 application/pdf Accepted Manuscript true 2020-06-10T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
spellingShingle Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
Dmitri Finkelshtein
Eugene Lytvynov
title_short Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
title_full Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
title_fullStr Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
title_full_unstemmed Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
title_sort Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
author_id_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf
e5b4fef159d90a480b1961cef89a17b7
author_id_fullname_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein
e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov
author Dmitri Finkelshtein
Eugene Lytvynov
author2 Dmitri Finkelshtein
Yuri Kondratiev
Eugene Lytvynov
Maria João Oliveira
Ludwig Streit
format Journal article
container_title Journal of Mathematical Analysis and Applications
container_volume 479
container_issue 1
container_start_page 162
publishDate 2019
institution Swansea University
issn 0022-247X
doi_str_mv 10.1016/j.jmaa.2019.06.021
publisher Elsevier BV
document_store_str 1
active_str 0
description For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.
published_date 2019-11-01T02:07:15Z
_version_ 1821550613224226816
score 11.05878