Journal article 1083 views 179 downloads
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis
Journal of Mathematical Analysis and Applications, Volume: 479, Issue: 1, Pages: 162 - 184
Swansea University Authors: Dmitri Finkelshtein , Eugene Lytvynov
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (382.91KB)
DOI (Published version): 10.1016/j.jmaa.2019.06.021
Abstract
For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological...
Published in: | Journal of Mathematical Analysis and Applications |
---|---|
ISSN: | 0022-247X |
Published: |
Elsevier BV
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50766 |
first_indexed |
2019-06-08T14:55:17Z |
---|---|
last_indexed |
2020-07-20T19:11:34Z |
id |
cronfa50766 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-20T15:46:50.6422210</datestamp><bib-version>v2</bib-version><id>50766</id><entry>2019-06-08</entry><title>Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e5b4fef159d90a480b1961cef89a17b7</sid><ORCID>0000-0001-9685-7727</ORCID><firstname>Eugene</firstname><surname>Lytvynov</surname><name>Eugene Lytvynov</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-08</date><deptcode>MACS</deptcode><abstract>For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case.</abstract><type>Journal Article</type><journal>Journal of Mathematical Analysis and Applications</journal><volume>479</volume><journalNumber>1</journalNumber><paginationStart>162</paginationStart><paginationEnd>184</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0022-247X</issnPrint><keywords>Infinite dimensional holomorphy; Nuclear and co-nuclear spaces; Sequence of polynomials of binomial type; Sheffer operator; Sheffer sequence; Spaces of entire functions</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-01</publishedDate><doi>10.1016/j.jmaa.2019.06.021</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-20T15:46:50.6422210</lastEdited><Created>2019-06-08T10:46:36.3292803</Created><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Yuri</firstname><surname>Kondratiev</surname><order>2</order></author><author><firstname>Eugene</firstname><surname>Lytvynov</surname><orcid>0000-0001-9685-7727</orcid><order>3</order></author><author><firstname>Maria João</firstname><surname>Oliveira</surname><order>4</order></author><author><firstname>Ludwig</firstname><surname>Streit</surname><order>5</order></author></authors><documents><document><filename>0050766-08062019105307.pdf</filename><originalFilename>Finalversionv4.pdf</originalFilename><uploaded>2019-06-08T10:53:07.5670000</uploaded><type>Output</type><contentLength>346890</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-06-10T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-20T15:46:50.6422210 v2 50766 2019-06-08 Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false e5b4fef159d90a480b1961cef89a17b7 0000-0001-9685-7727 Eugene Lytvynov Eugene Lytvynov true false 2019-06-08 MACS For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case. Journal Article Journal of Mathematical Analysis and Applications 479 1 162 184 Elsevier BV 0022-247X Infinite dimensional holomorphy; Nuclear and co-nuclear spaces; Sequence of polynomials of binomial type; Sheffer operator; Sheffer sequence; Spaces of entire functions 1 11 2019 2019-11-01 10.1016/j.jmaa.2019.06.021 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-20T15:46:50.6422210 2019-06-08T10:46:36.3292803 Dmitri Finkelshtein 0000-0001-7136-9399 1 Yuri Kondratiev 2 Eugene Lytvynov 0000-0001-9685-7727 3 Maria João Oliveira 4 Ludwig Streit 5 0050766-08062019105307.pdf Finalversionv4.pdf 2019-06-08T10:53:07.5670000 Output 346890 application/pdf Accepted Manuscript true 2020-06-10T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
title |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
spellingShingle |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis Dmitri Finkelshtein Eugene Lytvynov |
title_short |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
title_full |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
title_fullStr |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
title_full_unstemmed |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
title_sort |
Sheffer homeomorphisms of spaces of entire functions in infinite dimensional analysis |
author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf e5b4fef159d90a480b1961cef89a17b7 |
author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein e5b4fef159d90a480b1961cef89a17b7_***_Eugene Lytvynov |
author |
Dmitri Finkelshtein Eugene Lytvynov |
author2 |
Dmitri Finkelshtein Yuri Kondratiev Eugene Lytvynov Maria João Oliveira Ludwig Streit |
format |
Journal article |
container_title |
Journal of Mathematical Analysis and Applications |
container_volume |
479 |
container_issue |
1 |
container_start_page |
162 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0022-247X |
doi_str_mv |
10.1016/j.jmaa.2019.06.021 |
publisher |
Elsevier BV |
document_store_str |
1 |
active_str |
0 |
description |
For certain Sheffer sequences $(s_n)_{n=0}^\infty$ on $\mathbb C$, Grabiner (1988) proved that, for each $\alpha\in[0,1]$, the corresponding Sheffer operator $z^n\mapsto s_n(z)$ extends to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$, the Fr\'echet topological space of entire functions of order at most $\alpha$ and minimal type (when the order is equal to $\alpha>0$). In particular, every function $f\in \mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$ admits a unique decomposition $f(z)=\sum_{n=0}^\infty c_n s_n(z)$, and the series converges in the topology of $\mathcal E^{\alpha}_{\mathrm{min}}(\mathbb C)$. Within the context of a complex nuclear space $\Phi$ and its dual space $\Phi'$, in this work we generalize Grabiner's result to the case of Sheffer operators corresponding to Sheffer sequences on $\Phi'$. In particular, for $\Phi=\Phi'=\mathbb C^n$ with $n\ge2$, we obtain the multivariate extension of Grabiner's theorem. Furthermore, for an Appell sequence on a general co-nuclear space $\Phi'$, we find a sufficient condition for the corresponding Sheffer operator to extend to a linear self-homeomorphism of $\mathcal E^{\alpha}_{\mathrm{min}}(\Phi')$ when $\alpha>1$. The latter result is new even in the one-dimensional case. |
published_date |
2019-11-01T02:07:15Z |
_version_ |
1821550613224226816 |
score |
11.05878 |