No Cover Image

Journal article 1206 views 186 downloads

An inverse analysis for determination of space-dependent heat flux in heat conduction problems in the presence of variable thermal conductivity

Farzad Mohebbi, Ben Evans Orcid Logo, Alexander Shaw, Mathieu Sellier

International Journal for Computational Methods in Engineering Science and Mechanics, Pages: 1 - 13

Swansea University Authors: Farzad Mohebbi, Ben Evans Orcid Logo

Abstract

Translator disclaimer Full Article Figures & data References Citations Metrics Reprints & Permissions Get accessAbstractThis article presents an inverse problem of determination of a space-dependent heat flux in steady-state heat conduction problems. The thermal conductivity of a heat conduc...

Full description

Published in: International Journal for Computational Methods in Engineering Science and Mechanics
ISSN: 1550-2287 1550-2295
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50600
Abstract: Translator disclaimer Full Article Figures & data References Citations Metrics Reprints & Permissions Get accessAbstractThis article presents an inverse problem of determination of a space-dependent heat flux in steady-state heat conduction problems. The thermal conductivity of a heat conducting body depends on the temperature distribution over the body. In this study, the simulated measured temperature distribution on part of the boundary is related to the variable heat flux imposed on a different part of the boundary through incorporating the variable thermal conductivity components into the sensitivity coefficients. To do so, a body-fitted grid generation technique is used to mesh the two-dimensional irregular body and solve the direct heat conduction problem. An efficient, accurate, robust, and easy to implement method is presented to compute the sensitivity coefficients through derived expressions. Novelty of the study is twofold: (1) Boundary-fitted grid-based sensitivity analysis in which all sensitivities can be obtained in only one direct solution (at each iteration), irrespective of the number of unknown parameters, and (2) the way the measured temperatures on part of boundary are related to a variable heat flux applied on another part of boundary through components of a variable thermal conductivity. The conjugate gradient method along with the discrepancy principle is used in the inverse analysis to minimize the objective function and achieve the desired solution.
Keywords: Inverse heat transfer, elliptic grid generation, sensitivity analysis, finite difference method, conjugate gradient method, variable thermal conductivity, variable heat flux
College: Faculty of Science and Engineering
Start Page: 1
End Page: 13