No Cover Image

Journal article 1172 views 173 downloads

The origin of heterogeneous nanoparticle uptake by cells

Paul Rees Orcid Logo, John Wills, Rowan Brown Orcid Logo, Claire Barnes Orcid Logo, Huw Summers Orcid Logo

Nature Communications, Volume: 10, Issue: 1

Swansea University Authors: Paul Rees Orcid Logo, John Wills, Rowan Brown Orcid Logo, Claire Barnes Orcid Logo, Huw Summers Orcid Logo

  • 50105.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution 4.0 International Licence (CC-BY).

    Download (1.85MB)

Abstract

Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle phy...

Full description

Published in: Nature Communications
ISSN: 2041-1723 2041-1723
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50105
first_indexed 2019-05-09T20:00:52Z
last_indexed 2021-01-16T04:10:28Z
id cronfa50105
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-15T10:37:19.6091292</datestamp><bib-version>v2</bib-version><id>50105</id><entry>2019-04-29</entry><title>The origin of heterogeneous nanoparticle uptake by cells</title><swanseaauthors><author><sid>537a2fe031a796a3bde99679ee8c24f5</sid><ORCID>0000-0002-7715-6914</ORCID><firstname>Paul</firstname><surname>Rees</surname><name>Paul Rees</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>219b2cbe96226a37100740de69432f5f</sid><firstname>John</firstname><surname>Wills</surname><name>John Wills</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d7db8d42c476dfa69c15ce06d29bd863</sid><ORCID>0000-0003-3628-2524</ORCID><firstname>Rowan</firstname><surname>Brown</surname><name>Rowan Brown</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>024232879fc13d5ceac584360af8742c</sid><ORCID>0000-0003-1031-7127</ORCID><firstname>Claire</firstname><surname>Barnes</surname><name>Claire Barnes</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a61c15e220837ebfa52648c143769427</sid><ORCID>0000-0002-0898-5612</ORCID><firstname>Huw</firstname><surname>Summers</surname><name>Huw Summers</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-29</date><deptcode>EAAS</deptcode><abstract>Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle physico-chemical characteristics, protein-particle interactions and subsequent agglomeration, diffusion and sedimentation. Sequentially, the nanoparticle internalisation process itself is also complex, and controlled by multiple aspects of a cell&#x2019;s state. Despite this multitude of factors, here we demonstrate that the statistical distribution of the nanoparticle dose per endosome is independent of the initial administered dose and exposure duration. Rather, it is the number of nanoparticle containing endosomes that are dependent on these initial dosing conditions. These observations explain the heterogeneity of nanoparticle delivery at the cellular level and allow the derivation of simple, yet powerful probabilistic distributions that accurately predict the nanoparticle dose delivered to individual cells across a population.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>10</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2041-1723</issnPrint><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-01</publishedDate><doi>10.1038/s41467-019-10112-4</doi><url>http://dx.doi.org/10.1038/s41467-019-10112-4</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK, BB/P026818/1</degreesponsorsfunders><apcterm/><lastEdited>2021-01-15T10:37:19.6091292</lastEdited><Created>2019-04-29T10:52:34.8136688</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Paul</firstname><surname>Rees</surname><orcid>0000-0002-7715-6914</orcid><order>1</order></author><author><firstname>John</firstname><surname>Wills</surname><order>2</order></author><author><firstname>Rowan</firstname><surname>Brown</surname><orcid>0000-0003-3628-2524</orcid><order>3</order></author><author><firstname>Claire</firstname><surname>Barnes</surname><orcid>0000-0003-1031-7127</orcid><order>4</order></author><author><firstname>Huw</firstname><surname>Summers</surname><orcid>0000-0002-0898-5612</orcid><order>5</order></author></authors><documents><document><filename>0050105-28052019102327.pdf</filename><originalFilename>50105.pdf</originalFilename><uploaded>2019-05-28T10:23:27.5870000</uploaded><type>Output</type><contentLength>1950419</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-28T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons Attribution 4.0 International Licence (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-15T10:37:19.6091292 v2 50105 2019-04-29 The origin of heterogeneous nanoparticle uptake by cells 537a2fe031a796a3bde99679ee8c24f5 0000-0002-7715-6914 Paul Rees Paul Rees true false 219b2cbe96226a37100740de69432f5f John Wills John Wills true false d7db8d42c476dfa69c15ce06d29bd863 0000-0003-3628-2524 Rowan Brown Rowan Brown true false 024232879fc13d5ceac584360af8742c 0000-0003-1031-7127 Claire Barnes Claire Barnes true false a61c15e220837ebfa52648c143769427 0000-0002-0898-5612 Huw Summers Huw Summers true false 2019-04-29 EAAS Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle physico-chemical characteristics, protein-particle interactions and subsequent agglomeration, diffusion and sedimentation. Sequentially, the nanoparticle internalisation process itself is also complex, and controlled by multiple aspects of a cell’s state. Despite this multitude of factors, here we demonstrate that the statistical distribution of the nanoparticle dose per endosome is independent of the initial administered dose and exposure duration. Rather, it is the number of nanoparticle containing endosomes that are dependent on these initial dosing conditions. These observations explain the heterogeneity of nanoparticle delivery at the cellular level and allow the derivation of simple, yet powerful probabilistic distributions that accurately predict the nanoparticle dose delivered to individual cells across a population. Journal Article Nature Communications 10 1 2041-1723 2041-1723 1 12 2019 2019-12-01 10.1038/s41467-019-10112-4 http://dx.doi.org/10.1038/s41467-019-10112-4 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University RCUK, BB/P026818/1 2021-01-15T10:37:19.6091292 2019-04-29T10:52:34.8136688 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Paul Rees 0000-0002-7715-6914 1 John Wills 2 Rowan Brown 0000-0003-3628-2524 3 Claire Barnes 0000-0003-1031-7127 4 Huw Summers 0000-0002-0898-5612 5 0050105-28052019102327.pdf 50105.pdf 2019-05-28T10:23:27.5870000 Output 1950419 application/pdf Version of Record true 2019-05-28T00:00:00.0000000 Distributed under the terms of a Creative Commons Attribution 4.0 International Licence (CC-BY). true eng
title The origin of heterogeneous nanoparticle uptake by cells
spellingShingle The origin of heterogeneous nanoparticle uptake by cells
Paul Rees
John Wills
Rowan Brown
Claire Barnes
Huw Summers
title_short The origin of heterogeneous nanoparticle uptake by cells
title_full The origin of heterogeneous nanoparticle uptake by cells
title_fullStr The origin of heterogeneous nanoparticle uptake by cells
title_full_unstemmed The origin of heterogeneous nanoparticle uptake by cells
title_sort The origin of heterogeneous nanoparticle uptake by cells
author_id_str_mv 537a2fe031a796a3bde99679ee8c24f5
219b2cbe96226a37100740de69432f5f
d7db8d42c476dfa69c15ce06d29bd863
024232879fc13d5ceac584360af8742c
a61c15e220837ebfa52648c143769427
author_id_fullname_str_mv 537a2fe031a796a3bde99679ee8c24f5_***_Paul Rees
219b2cbe96226a37100740de69432f5f_***_John Wills
d7db8d42c476dfa69c15ce06d29bd863_***_Rowan Brown
024232879fc13d5ceac584360af8742c_***_Claire Barnes
a61c15e220837ebfa52648c143769427_***_Huw Summers
author Paul Rees
John Wills
Rowan Brown
Claire Barnes
Huw Summers
author2 Paul Rees
John Wills
Rowan Brown
Claire Barnes
Huw Summers
format Journal article
container_title Nature Communications
container_volume 10
container_issue 1
publishDate 2019
institution Swansea University
issn 2041-1723
2041-1723
doi_str_mv 10.1038/s41467-019-10112-4
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
url http://dx.doi.org/10.1038/s41467-019-10112-4
document_store_str 1
active_str 0
description Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle physico-chemical characteristics, protein-particle interactions and subsequent agglomeration, diffusion and sedimentation. Sequentially, the nanoparticle internalisation process itself is also complex, and controlled by multiple aspects of a cell’s state. Despite this multitude of factors, here we demonstrate that the statistical distribution of the nanoparticle dose per endosome is independent of the initial administered dose and exposure duration. Rather, it is the number of nanoparticle containing endosomes that are dependent on these initial dosing conditions. These observations explain the heterogeneity of nanoparticle delivery at the cellular level and allow the derivation of simple, yet powerful probabilistic distributions that accurately predict the nanoparticle dose delivered to individual cells across a population.
published_date 2019-12-01T19:43:24Z
_version_ 1821345269025865728
score 11.04748